【題目】我們把不相等的兩個實(shí)數(shù)a,b中較大實(shí)數(shù)a記作max{a,b}=a,例如:max{2.3,3.4}=3.4, max{﹣5.6,﹣8.7}=﹣5.6,max{﹣3,0}=0…那么:關(guān)于x的方程 的解是

【答案】﹣1或1+
【解析】解:①當(dāng)x>﹣x,即x>0時,有:x= ,

解得:x1=1+ ,x2=1﹣ (舍);

②當(dāng)﹣x>x,即x<0時,有﹣x= ,

解得:x=﹣1;

綜上,關(guān)于x的方程 的解是x=1+ 或x=﹣1.

所以答案是:﹣1或1+

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解分式方程的解的相關(guān)知識,掌握分式方程無解(轉(zhuǎn)化成整式方程來解,產(chǎn)生了增根;轉(zhuǎn)化的整式方程無解);解的正負(fù)情況:先化為整式方程,求整式方程的解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線)的對稱軸為直線,與軸的一個交點(diǎn)在之間,其部分圖象如圖所示,則下列結(jié)論:;;為實(shí)數(shù));點(diǎn),,是該拋物線上的點(diǎn),則,正確的個數(shù)有(

A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,則∠CDF=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)了解本校學(xué)生對球類運(yùn)動的愛好情況,分為足球、籃球、排球、其他四個方面調(diào)查若干名學(xué)生,每人只選其中之一,統(tǒng)計(jì)后繪制成不完整的“折線統(tǒng)計(jì)圖”(扇形統(tǒng)計(jì)圖),根據(jù)信息解答下列問題:

(1)在這次調(diào)查中,一共調(diào)查名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,“足球”所在扇形圓心角度;
(3)將折線統(tǒng)計(jì)圖補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的兩邊長分別為5和6,則這個等腰三角形的周長為( 。
A.11
B.16
C.17
D.16或17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛轎車從甲城駛往乙城,同時一輛卡車從乙城駛往甲城,兩車沿相同路線勻速行駛,轎車到達(dá)乙城停留一段時間后,按原路原速返回甲城;卡車到達(dá)甲城比轎車返回甲城早0.5小時,轎車比卡車每小時多行駛60千米,兩車到達(dá)甲城后均停止行駛兩車之間的路程(千米)與轎車行駛時間(小時)的函數(shù)圖象如圖所示請結(jié)合圖象提供的信息解答下列問題

(1)請直接寫出甲城和乙城之間的路程,并求出轎車和卡車的速度;

(2)求轎車在乙城停留的時間,并直接寫出點(diǎn)的坐標(biāo);

(3) 請直接寫出轎車從乙城返回甲城過程中離甲城的路程(千米)與轎車行駛時間(小時)之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,AC和CB的延長線于點(diǎn)D,E,F(xiàn).
(1)求證:∠F+∠FEC=2∠A;
(2)過B點(diǎn)作BM∥AC交FD于點(diǎn)M,試探究∠MBC與∠F+∠FEC的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題是(
A.相等的角是對頂角
B.兩條直線被第三條直線所截,同位角相等
C.在同一平面內(nèi),垂直于同一條直線的兩條直線平行
D.同旁內(nèi)角互補(bǔ)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( 。

A.aa2a3B.a+aa2

C.a23a5D.a2a+1)=a3+1

查看答案和解析>>

同步練習(xí)冊答案