【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

【答案】
(1)證明:∵AF∥BC,

∴∠EAF=∠EDB,

∵E是AD的中點(diǎn),

∴AE=DE,

在△AEF和△DEB中,

,

∴△AEF≌△DEB(ASA),

∴AF=BD,

∵在△ABC中,∠BAC=90°,AD是中線,

∴AD=BD=DC= BC,

∴AD=AF


(2)解:四邊形ADCF是正方形.

∵AF=BD=DC,AF∥BC,

∴四邊形ADCF是平行四邊形,

∵AB=AC,AD是中線,

∴AD⊥BC,

∵AD=AF,

∴四邊形ADCF是正方形.


【解析】(1)由E是AD的中點(diǎn),AF∥BC,易證得△AEF≌△DEB,即可得AF=BD,又由在△ABC中,∠BAC=90°,AD是中線,根據(jù)直角三角形斜邊的中線等于斜邊的一半,即可證得AD=BD=CD= BC,即可證得:AD=AF;(2)由AF=BD=DC,AF∥BC,可證得:四邊形ADCF是平行四邊形,又由AB=AC,根據(jù)三線合一的性質(zhì),可得AD⊥BC,AD=DC,繼而可得四邊形ADCF是正方形.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直角三角形斜邊上的中線的相關(guān)知識(shí),掌握直角三角形斜邊上的中線等于斜邊的一半,以及對(duì)正方形的判定方法的理解,了解先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等;先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長(zhǎng)為5,則正方形A,B,C,D的面積的和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中A點(diǎn)的坐標(biāo)為(8y),AB⊥x軸于點(diǎn)B,sin∠OAB=,反比例函數(shù)y=的圖象的一支經(jīng)過AO的中點(diǎn)C,且與AB交于點(diǎn)D

1)求反比例函數(shù)解析式;

2)若函數(shù)y=3xy=的圖象的另一支交于點(diǎn)M,求三角形OMB與四邊形OCDB的面積的比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】16,如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫坐標(biāo)分別為整數(shù)的點(diǎn),其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根據(jù)這個(gè)規(guī)律,第2017個(gè)點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三沙市一艘海監(jiān)船某天在黃巖鳥P附近海域由南向北巡航,某一時(shí)刻航行到A處,測(cè)得該島在北偏東30°方向,海監(jiān)船以20海里/時(shí)的速度繼續(xù)航行,2小時(shí)后到達(dá)B處,測(cè)得該島在北偏東75°方向,求此時(shí)海監(jiān)船與黃巖島P的距離BP的長(zhǎng).(參考數(shù)據(jù): ≈1.414,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=CD=8,過點(diǎn)B作EB⊥AB,交CD于點(diǎn)E.若DE=6,則AD的長(zhǎng)為(

A.6
B.8
C.9
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P為∠EAF平分線上一點(diǎn),PB⊥AE于B,PC⊥AF于C,點(diǎn)M,N分別是射線AE,AF上的點(diǎn),且PM=PN.

(1)如圖1,當(dāng)點(diǎn)M在線段AB上,點(diǎn)N在線段AC的延長(zhǎng)線上時(shí),求證:BM=CN;
(2)在(1)的條件下,直接寫出線段AM,AN與AC之間的數(shù)量關(guān)系;
(3)如圖2,當(dāng)點(diǎn)M在線段AB的延長(zhǎng)線上,點(diǎn)N在線段AC上時(shí),若AC:PC=2:1,且PC=4,求四邊形ANPM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2015年12月月歷.

(1)如圖,用一正方形框在表中任意框住4個(gè)數(shù),記左上角的一個(gè)數(shù)為x,則另三個(gè)數(shù)用含x的式子表示出來(lái),從小到大依次是 ,

(2)在表中框住四個(gè)數(shù)之和最小記為a1,和最大記為a2,則a1+a2=

(3)當(dāng)(1)中被框住的4個(gè)數(shù)之和等于76時(shí),x的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去年2月“蒜你狠”風(fēng)潮又一次來(lái)襲,某市蔬菜批發(fā)市場(chǎng)大蒜價(jià)格猛漲,原來(lái)單價(jià)4元/千克的大蒜,經(jīng)過2月和3月連續(xù)兩個(gè)月增長(zhǎng)后,價(jià)格上升很快,物價(jià)部門緊急出臺(tái)相關(guān)政策控制價(jià)格,4月大蒜價(jià)格下降了36%,恰好與漲價(jià)前的價(jià)格相同,則2月,3月的平均增長(zhǎng)率為

查看答案和解析>>

同步練習(xí)冊(cè)答案