設(shè)a為正奇數(shù),則a2-1必是(  )的倍數(shù).
分析:根據(jù)奇數(shù)的表示a=2n+1,把a2-1利用平方差公式分解因式,然后代入整理即可得解.
解答:解:根據(jù)題意,設(shè)a=2n+1,
∴a2-1=(a+1)(a-1)=(2n+1+1)(2n+1-1)=4n(n+1),
∵n與n+1必定一奇一偶,
∴4n(n+1)是8的倍數(shù),
即a2-1必是8的倍數(shù).
故選C.
點評:本題考查了因式分解的應(yīng)用,利用奇數(shù)的表示與平方差公式分解因式是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

19、設(shè)a為正奇數(shù),則a2-1必是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

設(shè)a為正奇數(shù),則a2-1必是____的倍數(shù).


  1. A.
    5
  2. B.
    3
  3. C.
    8
  4. D.
    16

查看答案和解析>>

同步練習冊答案