如圖,等邊△ABC中,AO是∠BAC的角平分線,D為AO上一點(diǎn),以CD為一邊且在CD下方作等邊△CDE,連接BE.
(1)求證:△ACD≌△BCE;
(2)延長(zhǎng)BE至Q,P為BQ上一點(diǎn),連接CP、CQ使CP=CQ=5,若BC=8時(shí),求PQ的長(zhǎng).
(1)先根據(jù)等邊三角形的性質(zhì)得到AC=BC,DC=EC,∠ACB=∠DCE=60°,即可得到∠ACD=∠BCE,從而可以證得結(jié)論;(2)6
【解析】
試題分析:(1)先根據(jù)等邊三角形的性質(zhì)得到AC=BC,DC=EC,∠ACB=∠DCE=60°,即可得到∠ACD=∠BCE,從而可以證得結(jié)論;
(2)過(guò)點(diǎn)C作CH⊥BQ于H,根據(jù)等邊三角形及角平分線的性質(zhì)可得∠DAC=30°,再根據(jù)△ACD≌△BCE可得∠QBC=∠DAC=30°,根據(jù)含30°的直角三角形的性質(zhì)可得CH的長(zhǎng),最后根據(jù)勾股定理求解即可.
(1)∵△ABC與△DCE是等邊三角形,
∴AC=BC,DC=EC,∠ACB=∠DCE=60°,
∴∠ACD+∠DCB=∠ECB+∠DCB=60°,
∴∠ACD=∠BCE,
∴△ACD≌△BCE(SAS);
(2)過(guò)點(diǎn)C作CH⊥BQ于H,
∵△ABC是等邊三角形,AO是角平分線,
∴∠DAC=30°,
∵△ACD≌△BCE,
∴∠QBC=∠DAC=30°,
∴CH=BC=×8=4,
∵PC=CQ=5,CH=4,
∴PH=QH=3,
∴PQ=6.
考點(diǎn):等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),角平分線的性質(zhì),含30°的直角三角形的性質(zhì)
點(diǎn)評(píng):本題知識(shí)點(diǎn)多,綜合性較強(qiáng),但難度不大,是中考常見(jiàn)題,正確作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com