【題目】如圖,已知點A(1,-1),B(2,3),點P為x軸上一點,當(dāng)|PA-PB|的值最大時,點P的坐標(biāo)為( )
A.(-1,0)B.(,0)C.(,0)D.(1,0)
【答案】B
【解析】
由題意作A關(guān)于x軸對稱點C,連接BC并延長,BC的延長線與x軸的交點即為所求的P點;首先利用待定系數(shù)法即可求得直線BC的解析式,繼而求得點P的坐標(biāo).
解:作A關(guān)于x軸對稱點C,連接BC并延長交x軸于點P,
∵A(1,-1),
∴C的坐標(biāo)為(1, 1),
連接BC,設(shè)直線BC的解析式為:y=kx+b,
∴,解得,
∴直線BC的解析式為:y=2x-1,
當(dāng)y=0時,x=,
∴點P的坐標(biāo)為:(,0),
∵當(dāng)B,C,P不共線時,根據(jù)三角形三邊的關(guān)系可得:|PA-PB|=|PC-PB|<BC,
∴此時|PA-PB|=|PC-PB|=BC取得最大值.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點P是△ABC內(nèi)部或邊上的點(頂點除外),在△PAB,△PBC,△PCA中,若至少有一個三角形與△ABC相似,則稱點P是△ABC的自相似點.
例如:如圖1,點P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點P是△ABC的自相似點.
請你運用所學(xué)知識,結(jié)合上述材料,解決下列問題:
在平面直角坐標(biāo)系中,點M是曲線y=(x>0)上的任意一點,點N是x軸正半軸上的任意一點.
(1)如圖2,點P是OM上一點,∠ONP=∠M,試說明點P是△MON的自相似點;當(dāng)點M的坐標(biāo)是(,3),點N的坐標(biāo)是(,0)時,求點P的坐標(biāo);
(2)如圖3,當(dāng)點M的坐標(biāo)是(3,),點N的坐標(biāo)是(2,0)時,求△MON的自相似點的坐標(biāo);
(3)是否存在點M和點N,使△MON無自相似點?若存在,請直接寫出這兩點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=x2+x1的圖象與x軸交于A、B兩點,與y軸交于點C,連接AC,點P是拋物線上的一個動點,記△APC的面積為S,當(dāng)S=2時,相應(yīng)的點P的個數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線AB與軸交于點A,與軸交于點B,與直線OC:交于點C.
(1)若直線AB解析式為,
①求點C的坐標(biāo);
②求△OAC的面積.
(2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA=4,P、Q分別為線段OA、OE上的動點,連結(jié)AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論: ①a+b+c<0;②a–b+c<0;③b+2a<0;④abc>0,其中正確的是 (填寫正確的序號)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB// CD,Rt△EFG的頂點F,G分別落在直線AB,CD上,GE交AB于點H,∠EFG=90°,∠E=32°.
(1)∠FGE= °
(2)若GE平分∠FGD,求∠EFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1.在△ABC中,∠B=60°,∠DAC和∠ACE的角平分線交于點O,則∠O= °,
(2)如圖2,若∠B=α,其他條件與(1)相同,請用含α的代數(shù)式表示∠O的大;
(3)如圖3,若∠B=α,,則∠P= (用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣.某校為滿足學(xué)生的閱讀需求,欲購進一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會成員隨機抽取部分學(xué)生進行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計圖補充完整;
(3)圖2中“小說類”所在扇形的圓心角為 度;
(4)若該校共有學(xué)生2500人,估計該校喜歡“社科類”書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=4cm,∠BAC=90°.動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當(dāng)點P到達點B時,P、Q兩點停止運動.設(shè)點P的運動時間為ts,四邊形APQC的面積為ycm2 .
(1)當(dāng)t為何值時,△PBQ是直角三角形?
(2)①求y與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)t為何值時,y取得最小值?最小值為多少?
(3)設(shè)PQ的長為xcm,試求y與x的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com