【題目】如圖,矩形ABCD中,AB=1AD=2,MCD的中點(diǎn),點(diǎn)P在矩形的邊上沿A→B→C→M運(yùn)動(dòng),則△APM的面積y與點(diǎn)P經(jīng)過的路程x之間的函數(shù)關(guān)系用圖象表示大致是(

A.B.C.D.

【答案】B

【解析】

試題解析:當(dāng)PAB上運(yùn)動(dòng)時(shí),

所求三角形底為AP,高為MAB的距離也就是AD長度

因此SAPM=ADAP=x

函數(shù)關(guān)系為:y=x0x≤1);

當(dāng)PBC上運(yùn)動(dòng)時(shí),

SAPM=S梯形ABCM﹣SABP﹣SPCM

SABP=ABBP,

BP=x﹣1,

SABP=x﹣

SPCM=PCCM,

CM=DM=,PC=3﹣x,

SPCM=

S梯形ABCM=AB+CMBC=,

因此SAPM==﹣+1x≤3);

當(dāng)PCM上運(yùn)動(dòng)時(shí),

SAPM=CMAD,

CM=﹣x

SAPM=﹣x×2=﹣x+3x).

故該圖象分三段.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,點(diǎn),上,點(diǎn)外,比較的大小,并說明理由;

2)如圖②,點(diǎn),,上,點(diǎn)內(nèi),比較的大小,并說明理由;

3)利用上述兩題解答獲得的經(jīng)驗(yàn),解決如下問題:

在平面直角坐標(biāo)系中,如圖③,已知點(diǎn),點(diǎn)軸上,試求當(dāng)度數(shù)最大時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠ABC60°

(1)如圖1,P是邊BD延長線上一點(diǎn),以AP為邊向右作等邊△APE,連接BE、CE.

①求證:CEAD;

②若ABBE,求AE的長;

(2)如圖2,P是邊CD上一點(diǎn),點(diǎn)D關(guān)于AP的對稱點(diǎn)為E,連接BE并延長交AP的延長線于點(diǎn)F,連接DE、DF.BE11,DE5,求△ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的對稱軸是直線,與軸相交于,兩點(diǎn)(點(diǎn)在點(diǎn)右側(cè)),與軸交于點(diǎn).

1)求拋物線的解析式和,兩點(diǎn)的坐標(biāo);

2)如圖,若點(diǎn)是拋物線上、兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)(不與、重合),是否存在點(diǎn),使四邊形的面積最大?若存在,求點(diǎn)的坐標(biāo)及四邊形面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】⊙O△ABC的外接圓,請僅用無刻度的直尺,根據(jù)下列條件分別在圖1,圖2中畫出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫作法).

1)如圖1AC=BC;

2)如圖2,直線l⊙O相切于點(diǎn)P,且l∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】透明的口袋里裝有3個(gè)球,這3個(gè)球分別標(biāo)有數(shù)字1、2、3,這些球除了數(shù)字外都相同。

1)如果從袋中任意摸出一個(gè)球,那么摸到標(biāo)有數(shù)字是2的球的概率是多少?(3分)

2)小明和小東玩摸球游戲,游戲規(guī)則如下:先由小明隨機(jī)摸出一個(gè)球,記下球的數(shù)字后放回,攪勻后再由小東隨機(jī)摸出一個(gè)球,記下球的數(shù)字.誰摸出的球的數(shù)字大,誰獲勝.現(xiàn)請你利用樹狀圖或列表的方法分析游戲規(guī)則對雙方是否公平?并說明理由。(6分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1軸交于兩點(diǎn),圓心的坐標(biāo)為,二次函數(shù)的圖象經(jīng)過兩點(diǎn),與軸交于點(diǎn),頂點(diǎn)為,直線軸交于點(diǎn).

(1)求二次函數(shù)的解析式.

(2)經(jīng)過坐標(biāo)原點(diǎn)的直線相切,求直線的解析式.

(3)試問在軸上是否存在點(diǎn),使的周長最。咳舸嬖,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線的對稱軸與x軸交于點(diǎn)A.

1A的坐標(biāo)為 (用含a的代數(shù)式表示);

2)若拋物線與x軸交于P,Q兩點(diǎn),且PQ=2,求拋物線的解析式.

3)點(diǎn)B的坐標(biāo)為,若該拋物線與線段AB恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為8,點(diǎn)EDC上的一動(dòng)點(diǎn),過點(diǎn)作EFAE,交BC于點(diǎn)F,連結(jié)AF.

1)證明:△ADE∽△ECF;

2)若△ADE的周長與△ECF的周長之比為43,求BF的長.

查看答案和解析>>

同步練習(xí)冊答案