如圖,A、P、B、C是⊙O上的四點,∠APC=∠CPB=60°,過點C作CM∥BP交PA的延長線于點M.
(1)求證:△ACM≌△BCP;
(2)若PA=1,PB=2,求△PCM的面積.
分析:(1)根據(jù)圓周角定理由∠APC=∠CPB=60°得∠BAC=∠ABC=60°,則△ABC是等邊三角形,所以BC=AC,∠ACB=60°,再由CM∥BP得到∠PCM=∠BPC=60°,有可判斷△PCM是等邊三角形,得到PC=MC,∠M=60°,易得∠PCB=∠ACM,然后利用“AAS“可判斷△ACM≌△BCP≌△ACM;
(2)由△ACM≌△BCP≌△ACM得AM=PB=2,則PM=PA+AM=3,由于△PCM是等邊三角形,于是可根據(jù)等邊三角形的性質(zhì)計算其面積.
解答:(1)證明:∵∠APC=∠CPB=60°,
∴∠BAC=∠ABC=60°,
∴△ABC是等邊三角形,
∴BC=AC,∠ACB=60°,
∵CM∥BP
∴∠PCM=∠BPC=60°,
又∵∠APC=60°,
∴△PCM是等邊三角形
∴PC=MC,∠M=60°,
∵∠BCA-∠PCA=∠PCM-∠PCA,
∴∠PCB=∠ACM,
在△ACM和△BCP中,
∠BPC=∠M
∠PCB=∠MCA
CB=CA
,
∴△ACM≌△BCP≌△ACM(AAS),

(2)∵△ACM≌△BCP,
∴AM=PB=2,
∴PM=PA+AM=1+2=3,
∵△PCM是等邊三角形,
∴△PCM的面積=
3
4
CM2=
9
3
4
點評:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了等邊三角形的判定與性質(zhì)、三角形全等的判定與性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點,過A,B兩點分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點得菱形,又順次連接菱形各邊中點得矩形,再順次連接矩形各邊中點得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖是某幾何體的三視圖,則這個幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案