精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度,
(1)請在所給的網(wǎng)格內(nèi)適當(dāng)平移線段AB、BC,使平移后的線段與原線段AB、BC組成菱形ABCD,并寫出點(diǎn)D的坐標(biāo)
 
;
(2)菱形ABCD的周長為
 
個單位長度.
分析:(1)根據(jù)菱形的四條邊相等,可分別以點(diǎn)A,C為圓心,以AB長為半徑畫弧,兩弧的交點(diǎn)即為點(diǎn)D的位置,根據(jù)所在象限和距坐標(biāo)軸的距離得到點(diǎn)D的坐標(biāo)即可;
(2)利用勾股定理易得菱形的一條邊長,乘以4即為菱形的周長.
解答:精英家教網(wǎng)解:(1)如圖,菱形ABCD為所求圖形(畫圖正確)(3分)
D(-2,1)(5分);

(2)4×
12+42
=4
17
(7分).
點(diǎn)評:主要考查了菱形四條邊相等的性質(zhì),及勾股定理的運(yùn)用,難點(diǎn)是得到菱形的邊長所在的直角三角形的兩直角邊長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案