【題目】如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PC∥AB,點M是OP中點.
(1)求證:四邊形OBCP是平行四邊形;
(2)填空:
①當(dāng)∠BOP= 時,四邊形AOCP是菱形;
②連接BP,當(dāng)∠ABP= 時,PC是⊙O的切線.
【答案】(1)見解析;(2)①120°;②45°
【解析】
(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結(jié)論;
(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;
②由切線的性質(zhì)和平行線的性質(zhì)得出∠BOP=90°,由等腰三角形的性質(zhì)得出∠ABP=∠OPB=45°即可.
(1)證明:∵PC∥AB,
∴∠PCM=∠OAM,∠CPM=∠AOM.
∵點M是OP的中點,
∴OM=PM,在△CPM和△AOM中,
,
∴△CPM≌△AOM(AAS),
∴PC=OA.
∵AB是半圓O的直徑,
∴OA=OB,
∴PC=OB.
又PC∥AB,
∴四邊形OBCP是平行四邊形.
(2)解:①∵四邊形AOCP是菱形,
∴OA=PA,
∵OA=OP,
∴OA=OP=PA,
∴△AOP是等邊三角形,
∴∠A=∠AOP=60°,
∴∠BOP=120°;
故答案為:120°;
②∵PC是⊙O的切線,
∴OP⊥PC,∠OPC=90°,
∵PC∥AB,
∴∠BOP=90°,
∵OP=OB,
∴△OBP是等腰直角三角形,
∴∠ABP=∠OPB=45°,
故答案為:45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點P在線段AD上運動時,設(shè)PA=x,是否存在實數(shù)x,使得以點P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB,作圖.
步驟1:在OB上任取一點M,以點M為圓心,MO長為半徑畫半圓,分別交OA、OB于點P、Q;
步驟2:過點M作PQ的垂線交 于點C;
步驟3:畫射線OC.
則下列判斷:①=;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA交于點E,連接AC、BD交于點F,作AH⊥CE,垂足為點H,已知∠ADE=∠ACB.
(1)求證:AH是⊙O的切線;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求證:CD=DH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點坐標(biāo)為(﹣2,﹣9a),下列結(jié)論:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個根x1和x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個根,則這四個根的和為﹣4.其中正確的結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=8,AD=6,P、Q是對角線BD上不重合的兩點,點P關(guān)于直線AD,AB的對稱點分別點E,F,點Q關(guān)于直線BC,CD的對稱點分別是點G、H.若由點E,F,G,H構(gòu)成的四邊形恰好為菱形,則PQ的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣1,2)、B(3,6)在拋物線y=ax2+bx上
(1)求拋物線的解析式;
(2)如圖1,點F的坐標(biāo)為(0,m)(m>2),直線AF交拋物線于另一點G,過點G作x軸的垂線,垂足為H.設(shè)拋物線與x軸的正半軸交于點E,連接FH、AE,求證:FH∥AE;
(3)如圖2,直線AB分別交x軸、y軸于C、D兩點.點P從點C出發(fā),沿射線CD方向勻速運動,速度為每秒個單位長度;同時點Q從原點O出發(fā),沿x軸正方向勻速運動,速度為每秒1個單位長度.點M是直線PQ與拋物線的一個交點,當(dāng)運動到t秒時,QM=2PM,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年12月2日1時30分,中國于西昌衛(wèi)星發(fā)射中心成功將“嫦娥三號”探測器送入軌道.2013年12月15日4時35分,“嫦娥三號”探測器與“玉兔號”月球車分離,“玉兔號”月球車順利駛抵月球表面,留下了中國在月球上的第一個足跡.“玉兔號”月球車一共在月球上工作了972天,約23000小時.將23000用科學(xué)記數(shù)法表示為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com