若直線y=(m-2)x+m經(jīng)過第一、二、四象限,則m的范圍是________.

0<m<2
分析:若函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限,則k<0,b>0,由此可以確定m的取值范圍.
解答:∵直線y=(m-2)x+m經(jīng)過第一、二、四象限,
∴m-2<0,m>0,
故0<m<2.
故填空答案:0<m<2.
點(diǎn)評:一次函數(shù)y=kx+b的圖象有四種情況:
①當(dāng)k>0,b>0,函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限,y的值隨x的值增大而增大;
②當(dāng)k>0,b<0,函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限,y的值隨x的值增大而增大;
③當(dāng)k<0,b>0時(shí),函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限,y的值隨x的值增大而減;
④當(dāng)k<0,b<0時(shí),函數(shù)y=kx+b的圖象經(jīng)過第二、三、四象限,y的值隨x的值增大而減。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(-1,0)、B(3,0)、N(2,精英家教網(wǎng)3)三點(diǎn),且與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式,并寫出頂點(diǎn)M及點(diǎn)C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過C、M兩點(diǎn),且與x軸交于點(diǎn)D,試證明四邊形CDAN是平行四邊形;
(3)點(diǎn)P是這個(gè)二次函數(shù)的對稱軸上一動(dòng)點(diǎn),請?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),并且與直線CD相切?如果存在,請求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,半圓的圓心與坐標(biāo)原點(diǎn)重合,圓的半徑為1,直線l的解析式為y=x+t.若直線l與半圓只有一個(gè)交點(diǎn),則t的取值范圍是
 
;若直線l與半圓有交點(diǎn),則t的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•本溪一模)在直角坐標(biāo)系中,放置一個(gè)如圖的直角三角形紙片AOB,已知OA=2,∠AOB=30°,D、E兩點(diǎn)同時(shí)從原點(diǎn)O出發(fā),D點(diǎn)以每秒
3
個(gè)單位長度的速度沿y軸正方向運(yùn)動(dòng),E點(diǎn)以每秒1個(gè)單位長度的速度沿x軸正方向運(yùn)動(dòng),設(shè)D、E兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(t≠0).
(1)在點(diǎn)D、E的運(yùn)動(dòng)過程中,直線DE與線段OA垂直嗎?請說明理由;
(2)當(dāng)時(shí)間t在什么范圍時(shí),直線DE與線段OA有公共點(diǎn)?
(3)若直線DE與直線OA相交于點(diǎn)F,將△OEF沿DE向上折疊,設(shè)折疊后△OEF與△AOB重疊部分面積為S,請直接寫出S與t的函數(shù)關(guān)系式,并寫出t為何值時(shí),折疊面積最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂陵市二模)如圖,在平面直角坐標(biāo)系中,線段AB的端點(diǎn)坐標(biāo)為A(-1,2),B(3,1),若直線y=kx-2與線段AB有交點(diǎn),則k的值可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在平面直角坐標(biāo)系xoy中,一次函數(shù)y=
34
x+3
的圖象與x軸和y軸交于A、B兩精英家教網(wǎng)點(diǎn),將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△A′OB′.
(1)分別求出點(diǎn)A′、B′的坐標(biāo);
(2)若直線A′B′與直線AB相交于點(diǎn)C,求S四邊形OB?CB的值.

查看答案和解析>>

同步練習(xí)冊答案