(2001•哈爾濱)在中,最簡(jiǎn)二次根式的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:判斷一個(gè)二次根式是否為最簡(jiǎn)二次根式主要方法是根據(jù)最簡(jiǎn)二次根式的定義進(jìn)行,或直觀地觀察被開(kāi)方數(shù)的每一個(gè)因數(shù)(或因式)的指數(shù)都小于根指數(shù)2,且被開(kāi)方數(shù)中不含有分母,被開(kāi)方數(shù)是多項(xiàng)式時(shí)要先因式分解后再觀察.
解答:解:4,符合最簡(jiǎn)二次根式的條件;
=|a|,被開(kāi)方數(shù)含能開(kāi)得盡方的因數(shù),不是最簡(jiǎn)二次根式;
,符合最簡(jiǎn)二次根式的條件;
=2被開(kāi)方數(shù)含能開(kāi)得盡方的因數(shù),不是最簡(jiǎn)二次根式;
因此符合條件的只有兩個(gè):4
故本題選擇B.
點(diǎn)評(píng):本題考查最簡(jiǎn)二次根式的定義.在判斷最簡(jiǎn)二次根式的過(guò)程中要注意:
(1)在二次根式的被開(kāi)方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡(jiǎn)二次根式;
(2)在二次根式的被開(kāi)方數(shù)中的每一個(gè)因式(或因數(shù)),如果冪的指數(shù)大于或等于2,也不是最簡(jiǎn)二次根式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2001•哈爾濱)已知:如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),它們的橫坐標(biāo)分別為-1和3,與y軸交點(diǎn)C的縱坐標(biāo)為3,△ABC的外接圓的圓心為點(diǎn)M.
(1)求這條拋物線的解析式;
(2)求圖象經(jīng)過(guò)M、A兩點(diǎn)的一次函數(shù)解析式;
(3)在(1)中的拋物線上是否存在點(diǎn)P,使過(guò)P、M兩點(diǎn)的直線與△ABC的兩邊AB、BC的交點(diǎn)E、F和點(diǎn)B所組成的△BEF和△ABC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2001•哈爾濱)如圖所示,是某學(xué)校一電熱淋浴器水箱的水量y(升)與供水時(shí)間x(分)的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)在(1)的條件下,求在30分鐘時(shí)水箱有多少升水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•哈爾濱)已知:如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),它們的橫坐標(biāo)分別為-1和3,與y軸交點(diǎn)C的縱坐標(biāo)為3,△ABC的外接圓的圓心為點(diǎn)M.
(1)求這條拋物線的解析式;
(2)求圖象經(jīng)過(guò)M、A兩點(diǎn)的一次函數(shù)解析式;
(3)在(1)中的拋物線上是否存在點(diǎn)P,使過(guò)P、M兩點(diǎn)的直線與△ABC的兩邊AB、BC的交點(diǎn)E、F和點(diǎn)B所組成的△BEF和△ABC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•哈爾濱)如圖所示,是某學(xué)校一電熱淋浴器水箱的水量y(升)與供水時(shí)間x(分)的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)在(1)的條件下,求在30分鐘時(shí)水箱有多少升水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2001•哈爾濱)已知:如圖,梯形ABCD中,AD∥BC,AD=AB,,梯形的高,且
(1)求∠B的度數(shù);
(2)設(shè)點(diǎn)M是梯形對(duì)角線AC上一點(diǎn),DM的延長(zhǎng)線與BC相交于點(diǎn)F,當(dāng)時(shí),求作以CF、DF的長(zhǎng)為根的一元二次方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案