【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
【答案】(1)反比例函數(shù)解析式為y=﹣,一次函數(shù)的解析式為y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.
【解析】試題分析:(1)先把點A的坐標代入反比例函數(shù)解析式,即可得到m=﹣8,再把點B的坐標代入反比例函數(shù)解析式,即可求出n=2,然后利用待定系數(shù)法確定一次函數(shù)的解析式;
(2)先求出直線y=﹣x﹣2與x軸交點C的坐標,然后利用S△AOB=S△AOC+S△BOC進行計算;
(3)觀察函數(shù)圖象得到當x<﹣4或0<x<2時,一次函數(shù)的圖象在反比例函數(shù)圖象上方,據(jù)此可得不等式的解集.
試題解析:(1)把A(﹣4,2)代入,得m=2×(﹣4)=﹣8,所以反比例函數(shù)解析式為,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b,得:,解得:,所以一次函數(shù)的解析式為y=﹣x﹣2;
(2)y=﹣x﹣2中,令y=0,則x=﹣2,即直線y=﹣x﹣2與x軸交于點C(﹣2,0),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;
(3)由圖可得,不等式的解集為:x<﹣4或0<x<2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)求證:BE=CF;
(2)如果AB=8,AC=6,求AE、BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,點P為△ABC內一點.
(1)連接PB,PC,將△BCP沿射線CA方向平移,得到△DAE,點B,C,P的對應點分別為點D、
A、E,連接CE.
①依題意,請在圖2中補全圖形;
②如果BP⊥CE,BP=3,AB=6,求CE的長
(2)如圖3,以點A為旋轉中心,將△ABP順時針旋轉60°得到△AMN,連接PA、PB、PC,當AC=3,
AB=6時,根據(jù)此圖求PA+PB+PC的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個正比例函數(shù)圖象與一個一次函數(shù)圖象交于點A(3,4),且一次函數(shù)的圖象與y軸相交于點B(0,-5).
(1)求這兩個函數(shù)的表達式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+1與y軸交于A點,與反比例函數(shù)(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且.
(1)求k的值;
(2)設點N(1,a)是反比例函數(shù)(x>0)圖象上的點,在y軸上是否存在點P,使得PM+PN最?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù),(k為常數(shù),k≠1).
(1)若點A(1,2)在這個函數(shù)的圖象上,求k的值;
(2)若在這個函數(shù)圖象的每一分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=13,試判斷點B(3,4),C(2,5)是否在這個函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+1與y軸交于A點,與反比例函數(shù)(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且.
(1)求k的值;
(2)設點N(1,a)是反比例函數(shù)(x>0)圖象上的點,在y軸上是否存在點P,使得PM+PN最。咳舸嬖,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王剪了兩張直角三角形紙片,進行了如下的操作:
(1)如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE,若AC=6cm,BC=8cm,求CD的長.
(2)如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=6cm,BC=8cm,求CD的長
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com