【題目】如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分是一個(gè)菱形,當(dāng)兩條紙條垂直時(shí),菱形的周長有最小值8,那么菱形周長的最大值是 .
【答案】17
【解析】
根據(jù)矩形的寬度不變,當(dāng)兩紙條的對角線互相重合時(shí),重疊部分的面積最大,邊長也最大,此時(shí)設(shè)菱形的邊長為x,然后表示出BC,再利用勾股定理列式進(jìn)行計(jì)算即可求出x的值,然后根據(jù)菱形的周長公式列式進(jìn)行計(jì)算即可得解.
解:如圖所示時(shí),重疊部分構(gòu)成的菱形的周長最大,
設(shè)AB=x,
∵矩形紙條的長為8,寬為2,
∴BC=8-x,
在Rt△ABC中,AB2=AC2+BC2,
即x2=22+(8-x)2,
整理得,16x=68,
解得x=,
故菱形周長的最大值4×=17.
故答案為:17.
本題考查了菱形的性質(zhì),利用菱形的面積確定出菱形的邊長最大時(shí)的情況是解題的關(guān)鍵,還利用了勾股定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三角形分割為四個(gè)都與它自己相似的小三角形.我們把(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為階分割(如圖);把階分割得出的個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為階分割(如圖)…,依此規(guī)則操作下去.階分割后得到的每一個(gè)小三角形都是全等三角形(為正整數(shù)),設(shè)此時(shí)小三角形的面積為.請寫出一個(gè)反映,,之間關(guān)系的等式________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,IB,IC分別平分∠ABC,∠ACB,過I點(diǎn)作DE∥BC,分別交AB于D,交AC于E,給出下列結(jié)論:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周長等于AB+AC,其中正確的是: ___________(只需填寫序號)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,根據(jù)要求回答下列問題:
(1)點(diǎn)A關(guān)于y軸對稱點(diǎn)A′的坐標(biāo)是 ;點(diǎn)B關(guān)于y軸對稱點(diǎn)B′的坐標(biāo)是
(2)作出△ABC關(guān)于y軸對稱的圖形△A′B′C′(不要求寫作法)
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線AB與軸交于點(diǎn)A,與軸交于點(diǎn)B,與直線OC:交于點(diǎn)C.
(1)若直線AB解析式為,
①求點(diǎn)C的坐標(biāo);
②求△OAC的面積.
(2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA=4,P、Q分別為線段OA、OE上的動(dòng)點(diǎn),連結(jié)AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個(gè)最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,C是AB上一點(diǎn),點(diǎn)D,E分別在AB兩側(cè),AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點(diǎn)F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CE=4,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機(jī)從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
黑棋數(shù) | 1 | 3 | 0 | 2 | 3 | 4 | 2 | 1 | 1 | 3 |
根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( )
A. 60枚 B. 50枚 C. 40枚 D. 30枚
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列材料,然后回答問題:
在關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)中,若各項(xiàng)的系數(shù)之和為零,即a+b+c=0,則有一根為1,另一根為.
證明:設(shè)方程的兩根為x1,x2,由a+b+c=0,知b=-(a+c),
∵x==,
∴x1=1,x2=.
(1)若一元二次方程ax2+bx+c=0(a≠0)的各項(xiàng)系數(shù)滿足a-b+c=0,請直接寫出此方程的兩根;
(2)已知方程(ac-bc)x2+(bc-ab)x+(ab-ac)=0有兩個(gè)相等的實(shí)數(shù)根,運(yùn)用上述結(jié)論證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com