【題目】為深化義務教育課程改革,滿足學生的個性化學習需求,某校就“學生對知識拓展,體育特長、藝術特長和實踐活動四類選課意向”進行了抽樣調查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據圖中信息,解答下列問題:
(1)求扇形統(tǒng)計圖中m的值,并補全條形統(tǒng)計圖;
(2)在被調查的學生中,隨機抽一人,抽到選“體育特長類”或“藝術特長類”的學生的概率是多少?
(3)已知該校有800名學生,計劃開設“實踐活動類”課程每班安排20人,問學校開設多少個“實踐活動類”課程的班級比較合理?
【答案】
(1)解:總人數=15÷25%=60(人).
A類人數=60﹣24﹣15﹣9=12(人).
∵12÷60=0.2=20%,
∴m=20.
條形統(tǒng)計圖如圖:
(2)解:抽到選“體育特長類”或“藝術特長類”的學生的概率=
(3)解:∵800×25%=200,200÷20=10,
∴開設10個“實驗活動類”課程的班級數比較合理.
【解析】(1)根據C類人數有15人,占總人數的25%可得出總人數,求出A類人數,進而可得出結論;(2)直接根據概率公式可得出結論;(3)求出“實踐活動類”的總人數,進而可得出結論.本題考查的是條形統(tǒng)計圖與扇形統(tǒng)計圖,根據題意得出樣本總數是解答此題的關鍵.
科目:初中數學 來源: 題型:
【題目】如圖,某超市利用一個帶斜坡的平臺裝卸貨物,其縱斷面ACFE如圖所示. AE為臺面,AC垂直于地面,AB表示平臺前方的斜坡.斜坡的坡角∠ABC為45°,坡長AB為2m.為保障安全,又便于裝卸貨物,決定減小斜坡AB的坡角,AD 是改造后的斜坡(點D在直線BC上),坡角∠ADC為31°.求斜坡AD底端D與平臺AC的距離CD.(結果精確到0.01m)[參考數據:sin31°=0.515,cos31°=0.857,tan31°=0.601, ≈1.414].
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上的兩點,∠BAC=∠DAC,過點C做直線EF⊥AD,交AD的延長線于點E,連接BC.
(1)求證:EF是⊙O的切線;
(2)若DE=1,BC=2,求劣弧 的長l.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線y=x2+bx+c交x軸于A、B兩點,交y軸于點C,直線y=x﹣3經過B、C兩點.
(1)求拋物線的解析式;
(2)過點C作直線CD⊥y軸交拋物線于另一點D,點P是直線CD下方拋物線上的一個動點,且在拋物線對稱軸的右側,過點P作PE⊥x軸于點E,PE交CD于點F,交BC于點M,連接AC,過點M作MN⊥AC于點N,設點P的橫坐標為t,線段MN的長為d,求d與t之間的函數關系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,連接PC,過點B作BQ⊥PC于點Q(點Q在線段PC上),BQ交CD于點T,連接OQ交CD于點S,當ST=TD時,求線段MN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四邊形OABC中,AB∥OC,BC⊥x軸于C,A(1,﹣1),B(3,﹣1),動點P從O點出發(fā),沿x軸正方向以2個單位/秒的速度運動.過P作PQ⊥OA于Q.設P點運動的時間為t秒(0<t<2),△OPQ與四邊形OABC重疊的面積為S.
(1)求經過O、A、B三點的拋物線的解析式并確定頂點M的坐標;
(2)用含t的代數式表示P、Q兩點的坐標;
(3)將△OPQ繞P點逆時針旋轉90°,是否存在t,使得△OPQ的頂點O或Q落在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由;
(4)求S與t的函數解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了進一步了解義務教育階段學生的體質健康狀況,教育部對我市某中學九年級的部分學生進行了體質檢測.體質檢測的結果分為四個等級:優(yōu)秀、良好、合格、不合格:根據調查結果繪制了下列兩幅不完整的統(tǒng)計圖,請你根據統(tǒng)計圖提供的信息回答以下問題:
(1)在扇形統(tǒng)計圖中,“合格”的百分比為多少?
(2)將條形統(tǒng)計圖補充完整:
(3)若該校九年級有400名學生,估計該校九年級體質為“不合格”,等級的學生約有多少人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數y= 在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為( )
A.36
B.12
C.6
D.3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com