【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4.分別以AB,AC,BC為邊在AB的同側作正方形ABEF,ACPQ,BCMN,四塊陰影部分的面積分別為S1,S2,S3,S4,則S1+S2+S3+S4等于____.
【答案】18
【解析】
過F作AM的垂線交AM于D,連接FP,通過證明△ADF≌△BCA,△DFK≌△CAT,得出S2=S△ABC;證明△FPT≌△EMK,可得出S1+S3=S△AQF=S△ABC;證明△ABC≌△EBN,得出S4=S△ABC,進而即可求解.
解:過F作AM的垂線交AM于D,連接FP,則
∠FDA=∠DAQ=∠Q=90°,∴四邊形ADFQ為矩形,∴∠PFD=90°,∴∠FPC=90°,
∴點F,P,Q在同一直線上.
∵四邊形ABEF為正方形,
∴AB=AF,∠FAB=90°=∠FAD+∠CAB,
又∠ACB=90°,∴∠CAB+∠ABC=90°,
∴∠FAD=∠ABC,
又∠ACB=∠ADF=90°
∴△ADF≌△BCA(AAS)①,
∴DF=AC,同理可得△DFK≌△CAT,
∴S2=S△ADF=S△ABC.
由△DFK≌△CAT,∴FK=AT,∠DKF=∠CTA,
∴KE=FT,∠EKM=∠FTP,又∠M=∠FPT=90°,
∴△FPT≌△EMK(AAS),
∴S3=S△FPT,
又四邊形ADFQ為矩形,∴S△AQF=S△ADF =S△ACB,
∴S1+S3=S△AQF=S△ABC.
同①可證明△ABC≌△EBN,
∴S4=S△ABC,
∴S1+S2+S3+S4=(S1+S3)+S2+S4=S△ABC+S△ABC+S△ABC=6+6+6=18,
故答案為:18.
科目:初中數學 來源: 題型:
【題目】重慶實驗外國語學校運動會期間,小明和小歡兩人打算勻速從教室跑到600米外的操場參加入場式,出發(fā)時小明發(fā)現鞋帶松了,停下來系鞋帶,小歡繼續(xù)跑往操場,小明系好鞋帶后立即沿同一路線開始追趕小歡.小明在途中追上小歡后繼續(xù)前行,小明到達操場時入場式還沒有開始,于是小明站在操場等待,小歡繼續(xù)前往操場.設小明和小歡兩人相距(米),小歡行走的時間為(分鐘),關于的函數圖像如圖所示,則在整個運動過程中,小明和小歡第一次相距米后,再過_____分鐘兩人再次相距米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點的坐標是,點的坐標是,點和點關于原點對稱,點是直線位于軸右側部分圖象上一點,連接,已知.
(1)求直線的解析式;
(2)如圖2,沿著直線平移得,平移后的點與點重合.點為直線上的一動點,當的值最小時,請求出的最小值及此時點的坐標;
(3)如圖3,將沿直線是翻折得點為平面內任意一動點,在直線上是否存在一點,使得以點為頂點的四邊形是矩形;若存在,請直接寫出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y= 的圖象與二次函數y=﹣x2+bx+c的圖象在第一象限內相交A、B兩點,A、B兩點的縱坐標分別為1,3,且AB=2
(1)求反比例函數的解析式;
(2)求二次函數的解析式;
(3)如果M為x軸上一點,N為y軸上一點,以點A,B,M,N為頂點的四邊形是平行四邊形,試求直線MN的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在學習二次根式后,發(fā)現一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2,善于思考的小明進行了以下探索:設a+b=(m+n)2(其中a,b,m,n均為正整數),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.
這樣小明就找到了一種把a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當a,b,m,n均為正整數時,若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a= ,b= ;
(2)利用所探索的結論,找一組正整數a,b,m,n填空:4+2 =(1+ )2;(答案不唯一)
(3)若a+4=(m+n)2,且a,m,n均為正整數,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點D、F分別在AC,BC邊上,C,D兩點不重合,設CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數關系的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com