如圖,△ABC內(nèi)接于⊙O,過點B作⊙O的切線,交于CA的延長線于點E,∠EBC=2∠C.
(1)求證:AB=AC;
(2)當=時,①求tan∠ABE的值;②如果AE=,求AC的值.

【答案】分析:(1)BE切⊙O于點B,根據(jù)弦切角定理得到∠ABE=∠C,把求證AB=AC的問題轉(zhuǎn)化為證明∠ABC=∠C的問題.
(2)①連接AO,交BC于點F,tan∠ABE=tan∠ABF=,轉(zhuǎn)化為求AF的問題.
②在△EBA和△ECB中,∠E=∠E,∠EBA=∠ECB,得到△EBA∽△ECB,再由切割線定理,得EB2=EA×EC=EA(EA+AC),就可以求出AC的長.
解答:(1)證明:∵BE切⊙O于點B,
∴∠ABE=∠C.
∵∠EBC=2∠C,
即∠ABE+∠ABC=2∠C.
∴∠ABC=∠C.
∴AB=AC.

(2)解:①如圖,連接AO,交BC于點F
∵AB=AC,∴;
∴AO⊥BC,且BF=FC.
;
設AB=m,BF=2m,
由勾股定理,得AF==;
∴tan∠ABE=tan∠ABF=
②在△EBA和△ECB中,
∵∠E=∠E,∠EBA=∠ECB,∴△EBA∽△ECB,
;
,
∴EB=EA(※);
由切割線定理,得EB2=EA×EC=EA(EA+AC);
將(※)式代入上式,得EA2=EA(EA+AC);
∵EA≠0,
∴AC=EA=×=4.
點評:本題主要考查了相似三角形的性質(zhì),對應邊的比相等,以及切割線定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點D在AB的延長線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長交BC于點D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習冊答案