如圖1,等腰梯形ABCD中,AD∥BC,AB=DC,P是BC上任意一點(diǎn),PE⊥AB于E,PF⊥CD于F,BG⊥CD于G,可得結(jié)論:PE+PF=BG;當(dāng)點(diǎn)P在BC的延長線上(如圖2)時(shí),其余條件不變,上述結(jié)論是否還成立?若成立,請給予證明;若不成立,PE、PF、BG之間又有怎樣的關(guān)系?請寫出你的猜想,并加以證明.

【答案】分析:首先過點(diǎn)B作BH∥CD,交PF的延長線于點(diǎn)H,易證得四邊形BGFH是平行四邊形,即可得BG=FH,又可證得△PBE≌△PBH,即可得PH=PE,繼而證得PE=PF+BG.
解答:解:不成立,關(guān)系為:PE=PF+BG.
過點(diǎn)B作BH∥CD,交PF的延長線于點(diǎn)H,
∵PF⊥CD,BG⊥CD,∠PBH=∠DCB,
∴BG∥FH,PH⊥BH,
∴四邊形BGFH是平行四邊形,∠H=90°,
∴FH=BG,
∵等腰梯形ABCD中,AD∥BC,AB=DC,
∴∠ABC=∠DCB,
∴∠ABC=∠PBH,
∵PE⊥AB,
∴∠PEB=∠H=90°,
在△PBE和△PBH中,
,
∴△PBE≌△PBH(AAS),
∴PH=PE,
∴PE=PF+FH=PF+BG.
點(diǎn)評:此題考查了等腰梯形的性質(zhì)、平行四邊形的判定與性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

1、如圖,在等腰梯形ABCD中,AD∥BC,∠B=60°,AD=AB.點(diǎn)E,F(xiàn)分別在AD,AB上,AE=BF,DF與CE相交于P,則∠DPE=
120
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2005•閘北區(qū)二模)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E.求證:
(1)△ABC≌△DCB;
(2)DE•DC=AE•BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•老河口市模擬)如圖,在等腰梯形ABCD中,AD∥BC,AB=AD,BC=(
2
+1
)AD,以AD為邊作等邊三角形ADE,則∠BEC=
75°或165°
75°或165°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=10cm,CD=4cm,點(diǎn)P從點(diǎn)A出發(fā),以1.5cm/秒的速度沿AB向終點(diǎn)B運(yùn)動;點(diǎn)Q從點(diǎn)C出發(fā),以1cm/秒的速度沿CD向終點(diǎn)D運(yùn)動(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動到終點(diǎn)時(shí),所有運(yùn)動即終止),設(shè)P、Q同時(shí)出發(fā)并運(yùn)動了t秒:
(1)當(dāng)點(diǎn)Q運(yùn)動到點(diǎn)D時(shí),PQ把梯形分成兩個(gè)特殊圖形是
平行四邊形
平行四邊形
等腰三角形
等腰三角形
;
(2)過點(diǎn)D作DE⊥AB,垂足為E,當(dāng)四邊形DEPQ是矩形時(shí),求t的值;
(3)探索:是否存在這樣的t值,使四邊形PBCQ的面積是四邊形APQD面積的2倍?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動,點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時(shí),S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時(shí),x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進(jìn)一步探究:對任何一個(gè)梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點(diǎn)并滿足什么條件時(shí),一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊答案