精英家教網 > 初中數學 > 題目詳情

平面直角坐標系xOy中,拋物線y=ax2-4ax+4a+c與x軸交于點A、B,與y軸的正半軸交于點C,點A的坐標為(1,0),OB=OC.

(1)求此拋物線的解析式;
(2)若點P是線段BC上的一個動點,過點P作y軸的平行線與拋物線在x軸下方交于點Q,試問線段PQ的長度是否存在最大值?若存在,求出其最大值;若不存在,請說明理由;
(3)若此拋物線的對稱軸上的點M滿足∠AMC=45°,求點M的坐標.

(1)y=x2-4x+3;(2)存在,;(3)(2,2-)或(2,2+).

解析試題分析:(1)求出拋物線的對稱軸,再根據對稱性求出點B的坐標,然后求出點C的坐標,再把點A、C的坐標代入拋物線求出a、c即可得解;
(2)利用待定系數法求出直線BC的解析式,然后表示出PQ的長,再根據二次函數的最值問題解答;
(3)求出△ABC的外接圓的圓心D的坐標,再求出外接圓的半徑,根據在同圓或等圓中,同弧所對的圓周角相等可得∠AMC=∠ABC=45°,再分點M在點D的下方和上方兩種情況寫出點M的坐標即可.
試題解析::(1)拋物線的對稱軸為直線x=
∵點A(1,0),
∴點B的坐標為(3,0),
∵點C在y軸的正半軸,OB=OC,
∴點C的坐標為(0,3),
,
解得,
∴此拋物線的解析式y(tǒng)=x2-4x+3;
(2)設直線BC的解析式為y=kx+b(k≠0),則
,
解得
∴直線BC的解析式為y=-x+3,
∴PQ=(-x+3)-(x2-4x+3)=-x2+3x=-(x-2+,
∵點Q在x軸下方,
∴1<x<3,
又∵-1<0,
∴當x=時,PQ的長度有最大值
(3)如圖,設△ABC的外接圓的圓D,

則點D在對稱性直線x=2上,也在直線BC的垂直平分線y=x上,
∴點D的坐標為(2,2),
∴外接圓的半徑為
∵OB=OC,
∴∠ABC=45°,
∴∠AMC=45°時,點M為⊙D與對稱軸的交點,
點M在點D的下方時,M1(2,2-),
點M在點D的上方時,M2(2,2+),
綜上所述,M(2,2-)或(2,2+)時,拋物線的對稱軸上的點M滿足∠AMC=45°.
考點: 二次函數綜合題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

某批發(fā)商以每件50元的價格購進800件T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據市場調查,單價每降低1元,可多售出10件,但最低單價應高于購進的價格;第二個月結束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉時單價為40元,設第二個月單價降低x元.
(1)填表:(不需化簡)

時間
 第一個月
第二個月
清倉時
 單價(元)
 80
 
 40
 銷售量(件)
 200
 
 
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某服裝經營部每天的固定費用為300元,現試銷一種成本為每件80元的服裝.規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于35%.經試銷發(fā)現,每件銷售單價相對成本提高x(元)(x為整數)與日均銷售量y(件)之間的關系符合一次函數y=kx+b,且當x=10時,y=100;x=20時,y=80.
(1)求一次函數y=kx+b的關系式;
(2)設該服裝經營部日均獲得毛利潤為W元(毛利潤=銷售收入-成本-固定費用),求W關于x的函數關系式;并求當銷售單價定為多少元時,日均毛利潤最大,最大日均毛利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知拋物線的解析式為
(1)求證:不論m為何值,此拋物線與x軸必有兩個交點,且兩交點A、B之間的距離為定值;
(2)設點P為此拋物線上一點,若△PAB的面積為8,求符合條件的點P的坐標;
(3)若(2)中△PAB的面積為S(S>0),試根據面積S值的變化情況,確定符合條件的點P的個數(本小題直接寫出結論,不要求寫出計算、證明過程).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線與x軸交于A(1,0)、B(-4,0)兩點,交y軸與C點.

(1)求該拋物線的解析式.
(2)在該拋物線位于第二象限的部分上是否存在點D,使得△DBC的面積S最大?若存在,求出點D的坐標;若不存在,請說明理由.
(3)設拋物線的頂點為點F,連接線段CF,連接直線BC,請問能否在直線BC上找到一個點M,在拋物線上找到一個點N,使得C、F、M、N四點組成的四邊形為平行四邊形,若存在,請寫出點M和點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,二次函數的頂點坐標為(0,2),矩形ABCD的頂點B.C在x軸上,A.D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內。

(1)求二次函數的解析式;
(2)設點D的坐標為(x,y),試求矩形ABCD的周長P關于自變量x的函數解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長為9?試證明你的結論。

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知二次函數y=a(x-m)2-2a(x-m)(a,m為常數,且a≠0).
(1)求證:不論a與m為何值,該函數的圖象與x軸總有兩個公共點;
(2)設該函數的圖象的頂點為C,與x軸交于A,B兩點,當△ABC是等腰直角三角形時,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖所示,某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若花園的BC邊長為x米,花園的面積為y(m2

(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達到200m2嗎?若能,求出此時x的值;若不能,說明理由;
(3)請結合題意,判斷當x取何值時,花園的面積最大?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

為了落實國務院的指示精神,某地方政府出臺了一系列“三農”優(yōu)惠政策,使農民收入大幅度增加.某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發(fā)現,該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+80.設這種產品每天的銷售利潤為w元.
(1)求w與x之間的函數關系式.
(2)該產品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產品的銷售價不高于每千克28元,該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克多少元?

查看答案和解析>>

同步練習冊答案