【題目】如圖,正方形中邊長為,上一點,且,邊上的一個動點,連接,以為邊向右側作等邊,連接,則的最小值為__________

【答案】

【解析】

由題意分析可知,點F為主動點,G為從動點,所以以點E為旋轉中心構造全等關系,得到點G的運動軌跡,之后通過垂線段最短構造直角三角形獲得CG最小值.

由題意可知,點F是主動點,點G是從動點,點F在線段上運動,點G也一定在直線軌跡上運動

將△EFB繞點E旋轉60°,使EFEG重合,得到△EFB≌△EHG

從而可知△EBH為等邊三角形,點G在垂直于HE的直線HN

CMHN,則CM即為CG的最小值

EPCM,可知四邊形HEPM為矩形,

CMMPCPHEECBEEC=1.5+=

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A-2-1)、B1,n)兩點。

(1)利用圖中條件求反比例函數(shù)和一次函數(shù)的解析式;

(2)根據圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點D,E分別在邊ABAC上,DCBE相交于點O,且DO2,BODC6OE3

1)求證:DEBC;

2)如果四邊形BCED的面積比ADE的面積大12,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)解方程:(x+1)(x+3)=15

2)解方程:3x22x2

3)解不等式組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,yx的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD的對角線ACBD相交于點O,下列條件中,不能判定四邊形ABCD是平行四邊形的是(  )

A. ,

B.

C. ,

D. ,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C為線段AB上一點,分別以AB、AC、CB為底作頂角為120°的等腰三角形,頂角頂點分別為D、E、F(點EFAB的同側,點D在另一側)

1)如圖1,若點CAB的中點,則∠CED=______°;

2)如圖2.若點C不是AB的中點

①求證:DEF為等邊三角形;

②連接CD,若∠ADC=90°,AD=,請求出DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點P是弦BC上一動點(不與端點重合),過點PPEAB于點E,延長EP于點F,交過點C的切線于點D

1)求證:△DCP是等腰三角形;

2)若OA6,∠CBA30°.

OEEB時,求DC的長;

的長為多少時,以點B,O,CF為頂點的四邊形是菱形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)是一款手機支架,忽略支管的粗細,得到它的簡化結構圖如圖(2)所示.已知支架底部支架CD平行于水平面,EFOEGFEF,支架可繞點O旋轉,OE20cm,EF20cm.如圖(3)若將支架上部繞O點逆時針旋轉,當點G落在直線CD上時,測量得∠EOG65°.

1)求FG的長度(結果精確到0.1);

2)將支架由圖(3)轉到圖(4)的位置,若此時FO兩點所在的直線恰好于CD垂直,點F的運動路線的長度稱為點F的路徑長,求點F的路徑長.

(參考數(shù)據:sin65°≈0.91cos65°≈0.42,tan65°≈2.14,1.73

查看答案和解析>>

同步練習冊答案