(2008•臨夏州)如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,tanC=
(1)求點D到BC邊的距離;
(2)求點B到CD邊的距離.

【答案】分析:(1)過D作DE⊥BC于E,那么DE就是所求的距離,因為AD∥BC,AB,DE都和BC垂直,那么四邊形ADEB就是個矩形.AD=BE,EC=BC-AD,在直角三角形CDE中,有了CE的值,又知道tanC的值,求出DE就不難了.
(2)作BF⊥CD于F,BF就是所求的距離.在直角三角形BCF和CED中,有一個公共角,BC=BE+EC=5=CD,那么Rt△BFC≌Rt△DEC,因此BF=DE=4.
解答:解:(1)如圖①,作DE⊥BC于E,
∵AD∥BC,∠B=90°,
∴∠A=90度.又∠DEB=90°,
∴四邊形ABED是矩形.
∴BE=AD=2,∴EC=BC-BE=3.
在Rt△DEC中,DE=EC•tanC==4.

(2)如圖②,作BF⊥CD于F.
在Rt△DEC中,∵CD=5,
∴BC=DC,
又∵∠C=∠C,∠DEC=∠BFC,
∴Rt△BFC≌Rt△DEC.
∴BF=DE=4.
點評:本題主要通過構(gòu)建直角三角形將已知和所求的條件都轉(zhuǎn)化到直角三角形中進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2008•臨夏州)如圖,小紅和小麗在操場上做游戲,她們先在地上畫出一個圓圈,然后站在距圓圈5米的地方向圓圈內(nèi)投小石子,則投一次就正好投到圓圈內(nèi)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•臨夏州)計算:(
1
2
-
1
3
)×12
=
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•臨夏州)化簡:(
1
a-2
-
1
a+2
)•(a2-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•臨夏州)如圖,網(wǎng)格小正方形的邊長都為1.在△ABC中,試畫出三邊的中線(頂點與對邊中點連結(jié)的線段),然后探究:三條中線位置的關(guān)系,以及三條中線所成的線段長度之間的關(guān)系,寫出你發(fā)現(xiàn)的一般結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前知識點回歸+鞏固 專題11 一次函數(shù)(解析版) 題型:解答題

(2008•臨夏州)下圖是某種蠟燭在燃燒過程中高度與時間之間關(guān)系的圖象,由圖象解答下列問題:
(1)此蠟燭燃燒1小時后,高度為______cm;經(jīng)過______小時燃燒完畢;
(2)求這個蠟燭在燃燒過程中高度與時間之間關(guān)系的解析式.

查看答案和解析>>

同步練習(xí)冊答案