如圖,一條拋物線(m<0)與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).若點(diǎn)M、N的坐標(biāo)分別為(0,—2)、(4,0),拋物線與直線MN始終有交點(diǎn),線段AB的長(zhǎng)度的最小值為            

 

 

【答案】

【解析】

試題分析:過(guò)點(diǎn)(0,—2)、(4,0)直線解析式為,拋物線與直線始終有交點(diǎn)

所以有解, ,解得,  當(dāng)時(shí),線段的長(zhǎng)度的最小,這時(shí)拋物線為它與x軸的交點(diǎn)為(,0 ) (,0).故線段的長(zhǎng)度的最小值為.

考點(diǎn):函數(shù)與方程(組)的關(guān)系.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,一條拋物線的對(duì)稱軸是直線x=
32
,經(jīng)過(guò)點(diǎn)(1,-3)、(3,-2),與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.D、E分別是邊AC、BC上的兩個(gè)動(dòng)點(diǎn)(不與A、精英家教網(wǎng)B重合),且保持DE∥AB.以DE為邊向上作正方形DEFG.
(1)求二次函數(shù)的解析式.
(2)試判斷△ABC的形狀,并說(shuō)明理由.
(3)當(dāng)正方形的邊GF在AB邊上時(shí),求正方形DEFG的邊長(zhǎng).
(4)當(dāng)D、E在運(yùn)動(dòng)過(guò)程中,正方形DEFG的邊長(zhǎng)能否與△ABC的外接圓相切?若相切,求出DE的長(zhǎng);若不能,則說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,一條拋物線經(jīng)過(guò)原點(diǎn),且頂點(diǎn)B的坐標(biāo)(1,-1).
(1)求這個(gè)拋物線的解析式;
(2)設(shè)該拋物線與x軸正半軸的交點(diǎn)為A,求證:△OBA為等腰直角三角形;
(3)設(shè)該拋物線的對(duì)稱軸與x軸的交點(diǎn)為C,請(qǐng)你在拋物線位于x軸上方的圖象上求兩點(diǎn)E、F,使△ECF為等腰直角三角形,且∠ECF=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•大連)如圖,一條拋物線與x軸相交于A、B兩點(diǎn),其頂點(diǎn)P在折線C-D-E上移動(dòng),若點(diǎn)C、D、E的坐標(biāo)分別為(-1,4)、(3,4)、(3,1),點(diǎn)B的橫坐標(biāo)的最小值為1,則點(diǎn)A的橫坐標(biāo)的最大值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一條拋物線y=ax2+bx(a≠0)的頂點(diǎn)坐標(biāo)為(2,
83
),正方形ABCD的邊AB落在x軸的正半軸上,頂點(diǎn)C、D在這條拋物線上.
(1)求這條拋物線的表達(dá)式;
(2)求正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春二模)如圖,一條拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(-3,0)與B(1,0).
(1)求這條拋物線的解析式.
(2)半徑為1的⊙P的圓心在拋物線上運(yùn)動(dòng),設(shè)P點(diǎn)的橫坐標(biāo)為m,當(dāng)⊙P與x軸只有一個(gè)公共點(diǎn)時(shí),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案