【題目】如圖,已知二次函數(shù)y=x2+x﹣的圖象與x軸交于點 A,B,交 y 軸于點 C,拋物線的頂點為 D.
(1)求拋物線頂點 D 的坐標以及直線 AC 的函數(shù)表達式;
(2)點 P 是拋物線上一點,且點P在直線 AC 下方,點 E 在拋物線對稱軸上,當△BCE 的周長最小時,求△PCE 面積的最大值以及此時點 P 的坐標;
(3)在(2)的條件下,過點 P 且平行于 AC 的直線分別交x軸于點 M,交 y 軸于點N,把拋物線y=x2+x﹣沿對稱軸上下平移,平移后拋物線的頂點為 D',在平移的過程中,是否存在點 D',使得點 D',M,N 三點構(gòu)成的三角形為直角三角形,若存在,直接寫出點 D'的坐標;若不存在,請說明理由.
【答案】(1)頂點D的坐標為(﹣1,﹣),直線AC的解析式為y=﹣x﹣;(2)當t=﹣時,△PEC的面積最大,最大值是,此時,點P的坐標為(﹣,﹣);(3)存在點 D',使得點 D',M,N 三點構(gòu)成的三角形為直角三角形,D′點的坐標為(﹣1, )(﹣1, ),(﹣1, ),(﹣1, ).
【解析】試題分析:(1)根據(jù)配方法,可得頂點坐標,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案,根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)線段垂直平分線的性質(zhì),線段的性質(zhì),可得E的坐標,根據(jù)平行于y的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得PQ,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;
(3)根據(jù)勾股定理,可得關(guān)于d的方程,根據(jù)解方程,可得答案.
試題解析:
(1)y=x2+x﹣=(x+1)2﹣,頂點D的坐標為(﹣1,﹣),
當y=0時, x2+x﹣=0,解得x1=﹣3,x2=1,
∴A(﹣3,0),B(1,0).
當x=0時,y=﹣,
∴C(0,﹣),
∴直線AC的解析式為y=﹣x﹣
(2)∵△CPE得周長為BC+CE+BE,其中BC的長是固定的,
∴周長取得最小值就是BE+CE取得最小值,
∵點E是拋物線對稱軸上一點,
∴BE=AE,
∴BE+CE=AE+CE,
∴BE+CE的最小值是AC,點E是AC與對稱軸的交點.
∴點E為(﹣1,﹣).
∵點P是拋物線上x軸下方一點,設(shè)點P為(t, t2+t﹣).且t2+t﹣<0.
過點P作QP⊥x軸交直線AC于點Q,點Q坐標為(t,﹣t﹣).
當點p在對稱軸左側(cè)時,S△PCE=S△PCQ﹣S△PEQ=PQ(0﹣t)﹣PQ(﹣1﹣t)=PQ,
當點P在對稱軸的右側(cè)時,S△PCE=S△PCQ+S△PEQ=PQ(0﹣t)+PQ[t﹣(﹣1)]= PQ,
∵PQ=(﹣t﹣)﹣(t2+t﹣)=﹣t2﹣t,
∴S△PCE=PQ=﹣t2﹣t=﹣(t+)2+ .
當t=﹣時,△PEC的面積最大,最大值是,此時,點P的坐標為(﹣,﹣);
(3)經(jīng)過點P且平行于AC的直線MN的解析式為y=﹣x﹣,
當x=0時,y=-,即N(0,﹣),當y=0時,x=﹣,即M(﹣,0),
設(shè)點D′的坐標為(﹣1,d),則MN2=(﹣)2+(﹣)2=,MD′2=[﹣﹣(﹣1)]2+d2=+d2,ND′2=(﹣1)2+(﹣﹣d)2=d2+d+.
當∠MD′N=90°時,MD′2+ND′2=MN2,即+d2+d2+d+=,
整理,得4d2+7d﹣17=0,解得d1=,d2=,
當∠NMD′=90°時,MD′2=ND′2+MN2,即+d2=d2+d++,
化簡,得d=﹣,解得d=﹣,
當∠NMD′﹣90°時,ND′2=MD′2+MN2, 即d2+d+=+d2+,
化簡,得d=,解得d=,
∴存在點 D',使得點 D',M,N 三點構(gòu)成的三角形為直角三角形,D′點的坐標為(﹣1, )(﹣1, ),(﹣1, )(﹣1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有三個點A、B、C,完成系列問題:
(1)將點B向右移動六個單位長度到點D,在數(shù)軸上表示出點D.
(2)在數(shù)軸上找到點E,使點E到A、C兩點的距離相等.并在數(shù)軸上標出點E表示的數(shù).
(3)在數(shù)軸上有一點F,滿足點F到點A與點F到點C的距離和是9,則點F表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)
如圖,點E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列有理數(shù):﹣(﹣3)、﹣4、0、+5、﹣
(1)這些有理數(shù)中,整數(shù)有 個,非負數(shù)有 個.
(2)畫數(shù)軸,并在數(shù)軸上表示這些有理數(shù).
(3)把這些有理數(shù)用“<“號連接起來: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知R t△ABC,∠ABC=90°,以直角邊AB為直徑作O,交斜邊AC于點D,連結(jié)BD.
(1)若AB=3,BC=4,求邊BD的長;
(2)取BC的中點E,連結(jié)ED,試證明ED與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=2,BC=6,點E從點D出發(fā),沿DA方向以每秒1個單位的速度向點A運動,點F從點B出發(fā),沿射線AB以每秒3個單位的速度運動,當點E運動到點A時,E、F兩點停止運動.連接BD,過點E作EH⊥BD,垂足為H,連接EF,交BD于點G,交BC于點M,連接CF. 給出下列結(jié)論:①△CDE∽△CBF;②∠DBC=∠EFC;③ ;④GH的值為定值;上述結(jié)論中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市創(chuàng)建“綠色發(fā)展模范城市”,針對境內(nèi)長江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用“生活污水集中處理”(下稱甲方案)和“沿江工廠轉(zhuǎn)型升級”(下稱乙方案)進行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進行一次性治理(當年完工),從當年開始,所治理的每家工廠一年降低的Q值都以平均值n計算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過三年治理,境內(nèi)長江水質(zhì)明顯改善.
(1)求n的值;
(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分數(shù)m,三年來用乙方案治理的工廠數(shù)量共190家,求m的值,并計算第二年用乙方案新治理的工廠數(shù)量;
(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計降低的Q值與當年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列一元一次方程解應(yīng)用題:
學(xué)生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共80千克,了解到這些蔬菜的種植成本共180元,還了解到如下信息:
(1)求采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子可賺多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知C,D是線段AB上的兩個點,M,N分別為AC,BD的中點.
(1)若,求的長及MN的長;
(2)如果,用含a,b的式子表示MN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com