【題目】如圖,已知二次函數(shù)y=x2+x的圖象與x軸交于點 A,B,交 y 軸于點 C,拋物線的頂點為 D

(1)求拋物線頂點 D 的坐標以及直線 AC 的函數(shù)表達式;

(2)點 P 是拋物線上一點,且點P在直線 AC 下方,點 E 在拋物線對稱軸上,當△BCE 的周長最小時,求△PCE 面積的最大值以及此時點 P 的坐標;

3)在(2)的條件下,過點 P 且平行于 AC 的直線分別交x軸于點 M,交 y 軸于點N,把拋物線y=x2+x沿對稱軸上下平移,平移后拋物線的頂點為 D',在平移的過程中,是否存在點 D',使得點 D',MN 三點構(gòu)成的三角形為直角三角形,若存在,直接寫出點 D'的坐標;若不存在,請說明理由.

【答案】(1)頂點D的坐標為(﹣1,﹣),直線AC的解析式為y=﹣x﹣;(2)當t=﹣時,△PEC的面積最大,最大值是,此時,點P的坐標為(﹣,﹣);(3)存在點 D',使得點 D',M,N 三點構(gòu)成的三角形為直角三角形,D′點的坐標為(﹣1, )(﹣1, ),(﹣1, ),(﹣1, ).

【解析】試題分析:(1)根據(jù)配方法,可得頂點坐標,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案,根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)線段垂直平分線的性質(zhì),線段的性質(zhì),可得E的坐標,根據(jù)平行于y的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得PQ,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;
(3)根據(jù)勾股定理,可得關(guān)于d的方程,根據(jù)解方程,可得答案.

試題解析:

1y=x2+x=x+12,頂點D的坐標為(﹣1,),

y=0時, x2+x=0,解得x1=3,x2=1

A(﹣3,0),B(1,0).

x=0時,y=

C0,),

∴直線AC的解析式為y=x

(2)∵△CPE得周長為BC+CE+BE,其中BC的長是固定的,

∴周長取得最小值就是BE+CE取得最小值,

∵點E是拋物線對稱軸上一點,

BE=AE,

BE+CE=AE+CE,

BE+CE的最小值是AC,點EAC與對稱軸的交點.

∴點E為(﹣1).

∵點P是拋物線上x軸下方一點,設(shè)點P為(t t2+t).且t2+t0

過點PQPx軸交直線AC于點Q,點Q坐標為(t,t).

當點p在對稱軸左側(cè)時,SPCE=SPCQSPEQ=PQ0tPQ1t=PQ,

當點P在對稱軸的右側(cè)時,SPCE=SPCQ+SPEQ=PQ0t+PQ[t1]= PQ,

PQ=tt2+t=t2t,

SPCE=PQ=t2t=t+2+

t=時,△PEC的面積最大,最大值是,此時,點P的坐標為(﹣,);

3)經(jīng)過點P且平行于AC的直線MN的解析式為y=x,

x=0時,y=,即N0),當y=0時,x=,即M0),

設(shè)點D′的坐標為(﹣1d),則MN2=2+2=,MD′2=[1]2+d2=+d2ND′2=12+d2=d2+d+

當∠MD′N=90°時,MD′2+ND′2=MN2,即+d2+d2+d+=,

整理,得4d2+7d17=0,解得d1=d2=,

當∠NMD′=90°時,MD′2=ND′2+MN2,即+d2=d2+d++

化簡,得d=,解得d=,

當∠NMD′90°時,ND′2=MD′2+MN2, d2+d+=+d2+,

化簡,得d=,解得d=,

∴存在點 D',使得點 D',MN 三點構(gòu)成的三角形為直角三角形,D′點的坐標為(﹣1, )(1 ),(1, )(1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上有三個點A、B、C,完成系列問題:

(1)將點B向右移動六個單位長度到點D,在數(shù)軸上表示出點D.

(2)在數(shù)軸上找到點E,使點EA、C兩點的距離相等.并在數(shù)軸上標出點E表示的數(shù).

(3)在數(shù)軸上有一點F,滿足點F到點A與點F到點C的距離和是9,則點F表示的數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

如圖,點EF在BC上,BE=CF,A=D,B=C,AF與DE交于點O.

(1)求證:AB=DC;

(2)試判斷OEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知下列有理數(shù):﹣(﹣3)、﹣4、0+5、﹣

1)這些有理數(shù)中,整數(shù)有   個,非負數(shù)有   個.

2)畫數(shù)軸,并在數(shù)軸上表示這些有理數(shù).

3)把這些有理數(shù)用號連接起來:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知R tABCABC90°,以直角邊AB為直徑作O,交斜邊AC于點D,連結(jié)BD

1)若AB3BC4,求邊BD的長;

2)取BC的中點E,連結(jié)ED,試證明ED與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=2,BC=6,點E從點D出發(fā),沿DA方向以每秒1個單位的速度向點A運動,點F從點B出發(fā),沿射線AB以每秒3個單位的速度運動,當點E運動到點A時,EF兩點停止運動.連接BD,過點EEHBD,垂足為H,連接EF,交BD于點G,交BC于點M,連接CF. 給出下列結(jié)論:①△CDE∽△CBF;②∠DBC=EFC; ;GH的值為定值上述結(jié)論中正確的個數(shù)為

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市創(chuàng)建綠色發(fā)展模范城市,針對境內(nèi)長江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用生活污水集中處理(下稱甲方案)和沿江工廠轉(zhuǎn)型升級(下稱乙方案)進行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進行一次性治理(當年完工),從當年開始,所治理的每家工廠一年降低的Q值都以平均值n計算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過三年治理,境內(nèi)長江水質(zhì)明顯改善.

(1)求n的值;

(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分數(shù)m,三年來用乙方案治理的工廠數(shù)量共190家,求m的值,并計算第二年用乙方案新治理的工廠數(shù)量;

(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計降低的Q值與當年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列一元一次方程解應(yīng)用題:

學(xué)生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共80千克,了解到這些蔬菜的種植成本共180元,還了解到如下信息:

(1)求采摘的黃瓜和茄子各多少千克?

(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知C,D是線段AB上的兩個點,M,N分別為AC,BD的中點.

1)若,求的長及MN的長;

2)如果,用含a,b的式子表示MN的長.

查看答案和解析>>

同步練習(xí)冊答案