如圖,在平面直角坐標(biāo)系中,一次函數(shù)(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求點(diǎn)B的坐標(biāo);

(3)在x軸上求點(diǎn)E,使△ACE為直角三角形.(直接寫出點(diǎn)E的坐標(biāo))

 

【答案】

解:(1)過點(diǎn)A作AD⊥x軸于D,

∵C的坐標(biāo)為(﹣2,0),A的坐標(biāo)為(n,6),    

∴AD=6,CD=n+2。

∵tan∠ACO=2,∴,

解得:n=1!郃(1,6)。

∴m=1×6=6。

∴反比例函數(shù)表達(dá)式為:。

又∵點(diǎn)A、C在直線上,

,解得:。

∴一次函數(shù)的表達(dá)式為:。

(2)由得:

解得:。

∵A(1,6),∴B(﹣3,﹣2)。

(3)點(diǎn) E的坐標(biāo)為(1,0)或(13,0)。

【解析】(1)過點(diǎn)A作AD⊥x軸于D,根據(jù)A、C的坐標(biāo)求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把點(diǎn)的坐標(biāo)代入解析式即可求得反比例函數(shù)和一次函數(shù)解析式。

(2)求出反比例函數(shù)和一次函數(shù)的另外一個(gè)交點(diǎn)即可。

(3)分兩種情況:①AE⊥x軸,②EA⊥AC,分別寫出E的坐標(biāo)即可

①當(dāng)AE⊥x軸時(shí),即點(diǎn)E與點(diǎn)D重合,此時(shí)E1(1,0)。

②當(dāng)EA⊥AC時(shí),此時(shí)△ADE∽△CDA,則。

又∵D的坐標(biāo)為(1,0),∴E2(13,0)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案