如圖,△ABC中,AD⊥BC,AB=AC,AE=AF,則圖中全等三角形的對(duì)數(shù)有


  1. A.
    5對(duì)
  2. B.
    6對(duì)
  3. C.
    7對(duì)
  4. D.
    8對(duì)
C
分析:三角形全等條件中必須是三個(gè)元素,并且一定有一組對(duì)應(yīng)邊相等.做題時(shí)要從已知條件開(kāi)始,結(jié)合判定方法對(duì)選項(xiàng)逐一驗(yàn)證.
解答:∵△ABC中,AD⊥BC,AB=AC,
∴BD=CD,
∴△ABD≌△ACD,
∴∠BAD=∠CAD,
又AE=AF,AO=AO,
∴△AOE≌△AOF,
EO=FO,
進(jìn)一步證明可得△BOD≌△COD,△BOE≌△COF,△AOB≌△AOC,△ABF≌△ACE,△BCE≌△CBF,共7對(duì).
故選C.
點(diǎn)評(píng):本題重點(diǎn)考查了三角形全等的判定定理,普通兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫(huà)∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案