【題目】小明對函數(shù)的圖象和性質(zhì)進行了探究.已知當(dāng)自變量的值為或時,函數(shù)值都為;當(dāng)自變量的值為或時,函數(shù)值都為.探究過程如下,請補充完整.
(1)這個函數(shù)的表達式為 ;
(2)在給出的平面直角坐標(biāo)系中,畫出這個函數(shù)的圖象并寫出這個函數(shù)的--條性質(zhì): ;
(3)進一步探究函數(shù)圖象并解決問題:
①直線與函數(shù)有三個交點,則 ;
②已知函數(shù)的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,寫出不等式的解集: .
【答案】(1);(2)如圖所示,見解析;性質(zhì):函數(shù)的圖象關(guān)于直線對稱;或:當(dāng)或時,函數(shù)有最小值;(3)①;②或.
【解析】
(1)將,;,;,代入,得到:,,,即可求解析式為;
(2)描點法畫出函數(shù)圖象,函數(shù)關(guān)于對稱;
(3)①從圖象可知:當(dāng)時,,時直線與函數(shù)有三個交點;
②與的交點為或,結(jié)合圖象,的解集為.
解:(1)將,;,;,代入,
得到:,解得
,
故答案為.
(2)如圖:
函數(shù)關(guān)于直線對稱,
(3)①當(dāng)時,,
時直線與函數(shù)有三個交點,
故答案為1;
②與的交點為或或x=3,
結(jié)合圖象,的解集為或,
故答案為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A(-5,0),以OA為半徑作半圓,點C是第一象限內(nèi)圓周上一動點,連結(jié)AC、BC,并延長BC至點D,使CD=BC,過點D作x軸垂線,分別交x軸、直線AC于點E、F,點E為垂足,連結(jié)OF.
(1)當(dāng)∠BAC=30時,求△ABC的面積;
(2)當(dāng)DE=8時,求線段EF的長;
(3)在點C運動過程中,是否存在以點E、O、F為頂點的三角形與△ABC相似,若存在,請求出點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一塊直角三角板OAB放在平面直角坐標(biāo)系中,B(2,0),∠AOB=60°,點A在第一象限,過點A的雙曲線為.在x軸上取一點P,過點P作直線OA的垂線l,以直線l為對稱軸,線段OB經(jīng)軸對稱變換后的像是OB.
(1)當(dāng)點O與點A重合時,點P的坐標(biāo)是 ;
(2)設(shè)P(t,0),當(dāng)OB與雙曲線有交點時,t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式組無解,且關(guān)于y的分式方程有非正整數(shù)解,則符合條件的所有整數(shù)k的值之和為( 。
A.﹣7B.﹣12C.﹣20D.﹣34
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,根據(jù)習(xí)俗每家每戶都會在門口掛燈籠和對聯(lián),某商店看準了商機,購進了一批紅燈籠和對聯(lián)進行銷售,已知每幅對聯(lián)的進價比每個紅燈籠的進價少10元,且用480元購進對聯(lián)的幅數(shù)是用同樣金額購進紅燈籠個數(shù)的6倍.
(1)求每幅對聯(lián)和每個紅燈籠的進價分別是多少?
(2)由于銷售火爆,第一批銷售完了以后,該商店用相同的價格再購進300幅對聯(lián)和200個紅燈籠,已知對聯(lián)售價為6元一幅,紅燈籠售價為24元一個,銷售一段時間后,對聯(lián)賣出了總數(shù)的,紅燈籠售出了總數(shù)的,為了清倉,該店老板對剩下的對聯(lián)和紅燈籠以相同的折扣數(shù)進行打折銷售,并很快全部售出,求商店最低打幾折可以使得這批貨的總利潤率不低于90%?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形的邊在軸上,點的坐標(biāo)為,點是對角線上的一個動點,點在軸上,當(dāng)最短時,點的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在四邊形ABCD中,AD//BC,∠C=90°動點P從點C出發(fā)沿線段CD向點D運動.到達點D即停止,若E、F分別是AP、BP的中點,設(shè)CP=x,△PEF的面積為y,且y與x之間的函數(shù)關(guān)系的圖象如圖乙所示,則線段AB長為( )
A.2B.2C.2D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉,進市場調(diào)查,甲種花卉的種植費用y(元)與種植面積xm2之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費用為100元/m2.
(1)請直接寫出當(dāng)0≤x≤300和x>300時,y與x的函數(shù)關(guān)系式;
(2)廣場上甲、乙兩種花卉的種植面積共1200m2,如果甲種花卉的種植面積不少于200m2,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費用最少?最少總費用為多少元?
(3)在(2)的條件下,若種植總費用不小于123000元,求出甲種花卉種植面積的范圍是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】內(nèi)接于,為的中點,連接,交邊于點,且.
(1)如圖1,求的度數(shù);
(2)如圖2,作于點,于點,交于點,求證:;
(3)如圖3,在(2)的條件下,連接,若,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com