5、如圖,在△ABC中,點E,D,F(xiàn)分別在邊AB,BC,CA上,且DE∥CA,DF∥BA.下列四個判斷中,不正確的是( 。
分析:由DE∥CA,DF∥BA,根據(jù)兩組對邊分別平行的四邊形是平行四邊形可得四邊形AEDF是平行四邊形,據(jù)此可以判斷A正確,又有∠BAC=90°,根據(jù)有一角是直角的平行四邊形是矩形,可得四邊形AEDF是矩形;故可以判斷B選項,如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,進而知∠FAD=∠ADF,AF=FD,那么根據(jù)鄰邊相等的平行四邊形是菱形,可得四邊形AEDF是菱形;如果AD⊥BC且當AB=AC時,那么AD平分∠BAC,則可得四邊形AEDF是菱形,故知D選項不正確.
解答:解:由DE∥CA,DF∥BA,根據(jù)兩組對邊分別平行的四邊形是平行四邊形可得四邊形AEDF是平行四邊形;
又有∠BAC=90°,根據(jù)有一角是直角的平行四邊形是矩形,可得四邊形AEDF是矩形.故A、B正確;
如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,
∴∠FAD=∠ADF,
∴AF=FD,那么根據(jù)鄰邊相等的平行四邊形是菱形,可得四邊形AEDF是菱形,故C正確;
如果AD⊥BC且AB=AC,那么AD平分∠BAC,可得四邊形AEDF是菱形.只有AD⊥BC,不能判斷四邊形AEDF是菱形,故D選項錯誤.
故選D.
點評:本題考查平行四邊形、矩形及菱形的判定,具體選擇哪種方法需要根據(jù)已知條件來確定,此題是道基礎概念題,需要熟練掌握菱形的判定定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案