【題目】如圖,正方形ABCD的邊長為4,點E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為F,則EF的長為( )
A.1 B. C.4﹣2 D.3﹣4
【答案】C
【解析】
試題分析:根據(jù)正方形的對角線平分一組對角可得∠ABD=∠ADB=45°,再求出∠DAE的度數(shù),根據(jù)三角形的內(nèi)角和定理求∠AED,從而得到∠DAE=∠AED,再根據(jù)等角對等邊的性質(zhì)得到AD=DE,然后求出正方形的對角線BD,再求出BE,最后根據(jù)等腰直角三角形的直角邊等于斜邊的倍計算即可得解.
解:在正方形ABCD中,∠ABD=∠ADB=45°,
∵∠BAE=22.5°,
∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,
在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,
∴∠DAE=∠AED,
∴AD=DE=4,
∵正方形的邊長為4,
∴BD=4,
∴BE=BD﹣DE=4﹣4,
∵EF⊥AB,∠ABD=45°,
∴△BEF是等腰直角三角形,
∴EF=BE=×(4﹣4)=4﹣2.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點A(﹣4,﹣2)和B(a,4).
(1)求反比例函數(shù)的解析式和點B的坐標(biāo);
(2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時,一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點,直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=2.
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積;
(3)直接寫出使一次函數(shù)值小于反比例函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形ABC內(nèi)接于圓O,AB=AC,AB的垂直平分線MN與邊AB交于點M,與AC所在的直線交于點N,若∠ANM=70°,則劣弧所對的圓心角的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明發(fā)明了一個魔術(shù)盒,當(dāng)任意實數(shù)對(a,b)進(jìn)入其中時,會得到一個新的實數(shù):a2+b﹣1,例如把(3,﹣2)放入其中,就會得到32+(﹣2)﹣1=6.那么如果將實數(shù)對(m,﹣2m)放入其中,得到實數(shù)2,則m= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的半徑為4,線段OP=4,則點P與⊙O的位置關(guān)系是( )
A. 點P在⊙O外 B. 點P在⊙O內(nèi) C. 點P在⊙O上 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標(biāo)A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有兩個相等的實數(shù)根;
④拋物線與x軸的另一個交點是(﹣1,0);
⑤當(dāng)1<x<4時,有y2<y1,
其中正確的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“350億”這個數(shù)用科學(xué)計數(shù)法表示為_______________;數(shù)”13.14萬”精確到________位;用四舍五入法將130.96精確到十分位是_______________;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com