如圖,拋物線與直線相交于O(0,0)和A(3,2)兩點,則不等式的解集為          

試題分析:仔細(xì)分析圖象特征,找出拋物線在直線下方的部分對應(yīng)的x的取值范圍即可.
∵拋物線與直線相交于O(0,0)和A(3,2)兩點
∴不等式的解集為.
點評:解題的關(guān)鍵是熟練掌握圖象在下方的部分對應(yīng)的函數(shù)值較小,圖象在上方的部分對應(yīng)的函數(shù)值較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+6x+c的圖象經(jīng)過點A(4,0)、B(﹣1,0),與y軸交于點C,點D在線段OC上,OD=t,點E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足為F.

(1)求這個二次函數(shù)的解析式;
(2)求線段EF、OF的長(用含t的代數(shù)式表示);
(3)當(dāng)△ECA為直角三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+42交x軸于點A,交直線y=x于點B,拋物線y=ax2﹣2x+c分別交線段AB、OB于點C、D,點C和點D的橫坐標(biāo)分別為16和4,點P在這條拋物線上.

(1)求點C、D的縱坐標(biāo).
(2)求a、c的值.
(3)若Q為線段OB上一點,P、Q兩點的縱坐標(biāo)都為5,求線段PQ的長.
(4)若Q為線段OB或線段AB上一點,PQ⊥x軸,設(shè)P、Q兩點間的距離為d(d>0),點Q的橫坐標(biāo)為m,直接寫出d隨m的增大而減小時m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象與軸交于A、B兩點,與軸交于點P,頂點為C(1,-2).

(1)求此函數(shù)的關(guān)系式;
(2)作點C關(guān)于軸的對稱點D,順次連接A、C、B、D.若在拋物線上存在點E,使直線PE將四邊形ABCD分成面積相等的兩個四邊形,求點E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在一點F,使得△PEF是以P為直角頂點的直角三角形?若存在,求出點F的坐標(biāo)及△PEF的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,將拋物線先向右平移兩個單位,再向上平移兩個單位,得到的拋物線的函數(shù)關(guān)系式是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線軸于A、B兩點,交軸于點C,
點P是它的頂點,點A的橫坐標(biāo)是3,點B的橫坐標(biāo)是1.

(1)求、的值;
(2)求直線PC的解析式;
(3)請?zhí)骄恳渣cA為圓心、直徑為5的圓與直線PC的位置關(guān)系,并說明理由.
(參考數(shù)據(jù),,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則下列結(jié)論中正確的是:(  )

A  a>0  b<0  c>0  
B  a<0  b<0  c>0
C  a<0  b>0  c<0
D  a<0  b>0  c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一條拋物線具有下列特征:(1)經(jīng)過點A(0,3);(2)在x軸左側(cè)的部分是上升的,在x軸右側(cè)的部分是下降的,試寫出一條滿足這兩條特征的拋物線的表達(dá)式:               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線y=2x2沿x軸方向向左平移1個單位后再沿y軸方向向上平移2個單位所得拋物線為
A.y=2(x-1)2+2B.y=2(x+1)2+2
C.y=2(x-1)2-2D.y=2(x+1)2-2

查看答案和解析>>

同步練習(xí)冊答案