1
x-2
,
1
(x-2)(x+3)
,
2
(x+3)2
通分過(guò)程中,不正確的是( 。
A、最簡(jiǎn)公分母是(x-2)(x+3)2
B、
1
x-2
=
(x+3)2
(x-2)(x+3)2
C、
1
(x-2)(x+3)
=
x+3
(x-2)(x+3)2
D、
2
(x+3)2
=
2x-2
(x-2)(x+3)2
分析:按照通分的方法依次驗(yàn)證各個(gè)選項(xiàng),找出不正確的答案.
解答:解:A、最簡(jiǎn)公分母為最簡(jiǎn)公分母是(x-2)(x+3)2,正確;
B、
1
x-2
=
(x+3)2
(x-2)(x+3)2
,通分正確;
C、
1
(x-2)(x+3)
=
x+3
(x-2)(x+3)2
,通分正確;
D、通分不正確,分子應(yīng)為2×(x-2)=2x-4;
故選D.
點(diǎn)評(píng):根據(jù)分?jǐn)?shù)的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分.通分保證(1)各分式與原分式相等;(2)各分式分母相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)算式分子都是整數(shù),滿足
(  )
3
+
(  )
5
+
(  )
7
≈1.16,那么你能算出他們的分子依次是哪些數(shù)嗎?
在我們的教科書中選取了一些具體值并將它們代入要解的一元二次方程中,大致估計(jì)出一元二次方程解的范圍,再在這個(gè)范圍內(nèi)逐步加細(xì)賦值,進(jìn)而逐步估計(jì)出一元二次方程的近似解.下面介紹另外一種估計(jì)一元二次方程近似解的方法,以方程x2-3x-1=0為例,因?yàn)閤≠0,所以先將其變形為x=3+
1
x
,用3+
1
x
代替x,得x=3+
1
x
=3+
1
3+
1
x
.反復(fù)若干次用3+
1
x
代替x,就得到x=3+
1
3+
1
3+
1
3+
1
3+
1
x
形如上式右邊的式子稱為連分?jǐn)?shù).
可以猜想,隨著替代次數(shù)的不斷增加,右式最后的
1
x
對(duì)整個(gè)式子的值的影響將越來(lái)越小,因此可以根據(jù)需要,在適當(dāng)時(shí)候把
1
x
忽略不計(jì),例如,當(dāng)忽略x=3+
1
x
中的
1
x
時(shí),就得到x=3;當(dāng)忽略x=3+
1
3+
1
x
中的
1
x
時(shí),就得到x=3+
1
3
;如此等等,于是可以得到一系列分?jǐn)?shù);
3,3+
1
3
,3+
1
3+
1
3
,3+
1
3+
1
3
1
3
,…,即3,
10
3
=3.333…,
33
10
≈3.3.
109
33
=3.303 03…,….
可以發(fā)現(xiàn)它們?cè)絹?lái)越趨于穩(wěn)定,事實(shí)上,這些數(shù)越來(lái)越近似于方程x2-3x-1=0的正根,而且它的算法也很簡(jiǎn)單,就是以3為第一個(gè)近似值,然后不斷地求倒數(shù),再加3而已,在計(jì)算機(jī)技術(shù)極為發(fā)達(dá)的今天,只要編一個(gè)極為簡(jiǎn)單的程序,計(jì)算機(jī)就能很快幫你算出它的多個(gè)近似值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解不等式4-2x<6;
(2)解不等式組
x≥-1
x<3
,并把不等式組的解在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解下列不等式(組),并把不等式的解集表示在數(shù)軸上.
(1)1+
x
3
>5-
x-2
2

(2)
2x+3>3x-1
x-2
3
≥0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1
x
-2”
用文字語(yǔ)言敘述,其中表述不正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案