(1)證明:∵四邊形ABCD是正方形,
∴∠ABC=90°,
即∠ABK+∠CBG=90°,
∵BK⊥BE,
∴∠ABK+∠FBH=90°,
∴∠FBH=∠CBG,
∵BF=BC,
∴∠BFH=∠BCG,
∵∠BHG=∠BFH+∠FBH,∠BGH=∠BCG+∠CBG,
∴∠BHG=∠BGH,
∴BH=BG;
(2)在BF上截取BN=BH,連接NH,AN交FC于O,
∵四邊形ABCD是正方形,
∴AB=BC,
∵BF=BC,
∴BF=BA,
在△BHF和△BNA中,
,
∴△BHF≌△BNA(SAS),∴∠BFH=∠BAN,
在△FON和△AOH,∠BFH=∠BAN,∠FON=∠AOH(對頂角相等),
∴∠ENA=∠AHF,
∵∠AHF=∠BHC=90°-∠HCB,
∵∠BFH=∠BAN=∠HCB,
∴∠ENA=∠AHF=90°-∠BAN,
∵∠EAN=90°-∠BAN,
∴∠EAN=∠ENA,
∴NE=AE,
∴BE=BN+NE=BH+AE=BG+AE.
分析:(1)由四邊形ABCD是正方形,BK⊥BE,根據(jù)同角的余角相等,易證得∠FBH=∠CBG,又由BF=BC,利用等邊對等角,可得∠BFH=∠BCG,然后利用三角形外角的性質,即可證得∠BHG=∠BGH,即可得BH=BG;
(2)首先在BF上截取BN=BH,連接NH,AN交FC于O,易證得△BHF≌△BNA,然后可證得∠ENA=∠AHF,利用同角的余角相等,可證得∠EAN=∠ENA,即可得EN=AE,繼而可證得BE=BG+AE.
點評:此題考查了正方形的性質、全等三角形的判定與性質以及等腰三角形的判定與性質.此題難度較大,注意掌握輔助線的作法,注意數(shù)形結合思想的應用.