【題目】深化理解:
新定義:對非負實數(shù)x “四舍五入”到個位的值記為,
即:當n為非負整數(shù)時,如果;
反之,當n為非負整數(shù)時,如果
例如:<0> = <0.48> = 0,<0.64> = <1.49> = 1,<2> = 2,<3.5> = <4.12> = 4,……
試解決下列問題:
(1)填空:①=________(為圓周率); ②如果的取值范圍為____________________.
(2)若關于x的不等式組的整數(shù)解恰有3個,求a的取值范圍.
(3)求滿足 的所有非負實數(shù)x的值.
【答案】(1)①3;②3.5≤x<4.5;(2)1.5≤a<2.5;(3)0,,
【解析】分析:(1)①利用對非負實數(shù)x“四舍五入”到個位的值記為<x>,進而得出<π>的值;
②利用對非負實數(shù)x“四舍五入”到個位的值記為<x>,進而得出x的取值范圍;
(2)首先將<a>看作一個字母,解不等式組進而根據(jù)整數(shù)解的個數(shù)得出a的取值范圍;
(3)利用<x>=x 設x=k,k為整數(shù),得出關于k的不等關系求出即可.
詳解:(1)①由題意可得:<π>=3;
故答案為:3,
②∵<x-1>=3,
∴2.5≤x-1<3.5
∴3.5≤x<4.5;
故答案為:3.5≤x<4.5;
(2)解不等式組得:-1≤x<<a>,
由不等式組整數(shù)解恰有3個得,1<<a>≤2,
故1.5≤a<2.5;
(3)∵x≥0,x為整數(shù),
設x=k,k為整數(shù),則x=k,
∴<k>=k,
∴k- ≤k<k+,k≥o,
∴0≤k≤2,
∴k=0,1,2,
則x=0,,.
科目:初中數(shù)學 來源: 題型:
【題目】某鎮(zhèn)水庫的可用水量為12000萬m3,假設年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.為實施城鎮(zhèn)化建設,新遷入了4萬人后,水庫只能夠維持居民15年的用水量.
(1)問:年降水量為多少萬m3?每人年平均用水量多少m3?
(2)政府號召節(jié)約用水,希望將水庫的使用年限提高到25年.則該鎮(zhèn)居民人均每年需節(jié)約多少m3水才能實現(xiàn)目標?
(3)某企業(yè)投入1000萬元設備,每天能淡化5000m3海水,淡化率為70%.每淡化1m3海水所需的費用為1.5元,政府補貼0.3元.企業(yè)將淡化水以3.2元/m3的價格出售,每年還需各項支出40萬元.按每年實際生產(chǎn)300天計算,該企業(yè)至少幾年后能收回成本(結果精確到個位)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)請在圖中找出一對全等三角形,用符號“≌”表示,并加以證明;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由;
(3)若AB=6,BD=2DC,求四邊形ABEF的面積..
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點G,點G在點A、E之間,連接CE、CF,EF,則以下四個結論一定正確的是:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊△;④CG⊥AE( 。
A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】星光櫥具店購進電飯煲和電壓鍋兩種電器進行銷售,其進價與售價如表:
進價(元/個) | 售價(元/個) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,櫥具店購進這兩種電器共30臺,用去了5600元,并且全部售完,問櫥具店在該買賣中賺了多少錢?
(2)為了滿足市場需求,二季度櫥具店決定用不超過9000元的資金采購電飯煲和電壓鍋共50個,且電飯煲的數(shù)量不少于23個,問櫥具店有哪幾種進貨方案?并說明理由;
(3)在(2)的條件下,請你通過計算判斷,哪種進貨方案櫥具店賺錢最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com