【題目】青島交運(yùn)集團(tuán)出租車(chē)司機(jī)張師傅某天下午的營(yíng)運(yùn)全是在東西走向的吉林路上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車(chē)?yán)锍?/span>單位:千米如下:,,,,,,,,,,
(1)張師傅這天最后到達(dá)目的地時(shí),在下午出車(chē)時(shí)的出發(fā)地哪個(gè)方向?距離出發(fā)地多遠(yuǎn)?
(2)張師傅這天下午共行車(chē)多少千米?
(3)若每千米耗油,則這天下午張師傅用了多少升油?
【答案】(1) 在出發(fā)點(diǎn)的東邊,距離為38千米;(2) 78千米;(3) 7.8升.
【解析】
(1)把所有行車(chē)?yán)锍滔嗉?/span>,再根據(jù)正數(shù)和負(fù)數(shù)的意義解答;
(2)求出所有行車(chē)?yán)锍痰慕^對(duì)值的和;
(3)將(2)中的結(jié)果乘以0.1即可.
解:(1)14-3+7-3+11-4-3+11+6-7+9=38(千米)
答:蔡師傅這天最后到達(dá)目的地時(shí),在出發(fā)地的東邊,距離下午出車(chē)時(shí)的出發(fā)地38千米;
(2)14+3+7+3+11+4+3+11+6+7+9=7(千米)
答:蔡師傅這天下午共行車(chē)78千米;
(3)78x0.1=7.8(L)
答:這天下午蔡師傅用了7.8升油.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)C(0,-2),直線l:y=kx-2k無(wú)論k取何值,直線總過(guò)定點(diǎn)B,
(1)求定點(diǎn)B的坐標(biāo).
(2)如圖1,若點(diǎn)D為直線BC上(點(diǎn)(-1,-3)除外)一動(dòng)點(diǎn),過(guò)點(diǎn)D作x軸的垂線交y= - 3于點(diǎn)E,點(diǎn)F在直線BC上,距離D點(diǎn)為個(gè)單位,D點(diǎn)橫坐標(biāo)為t,ΔDEF的面積為S,求S與t函數(shù)關(guān)系式.
(3)若直線BC關(guān)于x軸對(duì)稱(chēng)后再向上平移5個(gè)單位得到直線B1C1,如圖2,點(diǎn)G(1,a)和H(6,b)是直線B1C1上兩點(diǎn),點(diǎn)P(m,n)為第一象限內(nèi)(G、H兩點(diǎn)除外)的一點(diǎn),,且mn=6,直線PG和PH為分別交y軸于點(diǎn)MN兩點(diǎn),問(wèn)線段OM、ON有什么數(shù)量關(guān)系,請(qǐng)證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的面積為20cm2 , 對(duì)角線交于點(diǎn)O;以AB、AO為鄰邊做平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1;以AB、AO1為鄰邊做平行四邊形AO1C2B;…;依此類(lèi)推,則平行四邊形AO4C5B的面積為( )
A.cm2
B.cm2
C.cm2
D.cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線,交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料: 如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個(gè)端點(diǎn)P旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓.就是說(shuō),到某個(gè)定點(diǎn)等于定長(zhǎng)的所有點(diǎn)在同一個(gè)圓上,圓心在P(a,b),半徑為r的圓的方程可以寫(xiě)為:(x﹣a)2+(y﹣b)2=r2 , 如:圓心在P(2,﹣1),半徑為5的圓方程為:(x﹣2)2+(y+1)2=25
(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為;
②以B(﹣1,﹣2)為圓心, 為半徑的圓的方程為 .
(2)根據(jù)以上材料解決下列問(wèn)題: 如圖2,以B(﹣6,0)為圓心的圓與y軸相切于原點(diǎn),C是⊙B上一點(diǎn),連接OC,作BD⊥OC垂足為D,延長(zhǎng)BD交y軸于點(diǎn)E,已知sin∠AOC= .
①連接EC,證明EC是⊙B的切線;
②在BE上是否存在一點(diǎn)P,使PB=PC=PE=PO?若存在,求P點(diǎn)坐標(biāo),并寫(xiě)出以P為圓心,以PB為半徑的⊙P的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF.在此運(yùn)動(dòng)變化的過(guò)程中,請(qǐng)?zhí)骄浚?
(1)求證:△DFE是等腰直角三角形;
(2)四邊形CEDF的面積是否發(fā)生變化?若不變化,請(qǐng)求出面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別為-1,0,3,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)MN的長(zhǎng)為 ;
(2)如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,那么x的值是 ;
(3)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是8?若存在,直接寫(xiě)出x的值;若不存在,請(qǐng)說(shuō)明理由.
(4)如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列式并計(jì)算
(1)求+1.2的相反數(shù)與﹣1.3的絕對(duì)值的和.
(2)4與2的和的相反數(shù).
(3)巴黎和北京的時(shí)差是﹣7個(gè)小時(shí),李伯伯于北京時(shí)間9月29號(hào)早上8:00搭乘飛往巴黎,飛行時(shí)間約11個(gè)小時(shí),則李伯伯到達(dá)巴黎的時(shí)間是 .(填月日時(shí))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com