已知:如圖,直角梯形ABCD中,AD∥BC,∠A=90°,△BCD為等邊三角形,且AD=,求梯形ABCD的周長(zhǎng).

【答案】分析:先根據(jù)△BCD是等邊三角形,可得∠2=60°,BC=CD=BD,而AD∥BC,∠A=90°,根據(jù)平行線的性質(zhì)可求∠ABC=90°,進(jìn)而可求∠1=30°,利用直角三角形中30°的角所對(duì)的直角邊等于斜邊的一半,易求BD,再根據(jù)特殊三角函數(shù)值可求AB,從而可求梯形的周長(zhǎng).
解答:解:如右圖,
∵△BCD是等邊三角形,
∴∠2=60°,BC=CD=BD,
∵AD∥BC,∠A=90°,
∴∠ABC+∠A=180°,
∴∠ABC=90°,
∴∠1=90°-60°=30°,
在Rt△ABD中,∵∠1=30°,AD=,
∴BD=2AD=2,AB=tan30°•AD=
∴梯形ABCD的周長(zhǎng)=AD+AB+BC+CD=++2+2=+5
點(diǎn)評(píng):本題考查了二次根式的應(yīng)用,解題的關(guān)鍵是注意含有30°角的直角三角形的性質(zhì)使用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,直角梯形ABCD中,∠BCD=90°,∠CDA=60°,AB=AD,AB=4,DF=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠B=90°,AB=8,AD=12,tanC=
43
,AM∥DC,E精英家教網(wǎng)、F分別是線段AD、AM上的動(dòng)點(diǎn)(點(diǎn)E與A、D不重合)且∠FEM=∠AMB,設(shè)DE=x,MF=y.
(1)求證:AM=DM;
(2)求y與x的函數(shù)關(guān)系式并寫出定義域;
(3)若點(diǎn)E在邊AD上移動(dòng)時(shí),△EFM為等腰三角形,求x的值;
(4)若以BM為半徑的⊙M和以ED為半徑的⊙E相切,求△EMD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點(diǎn)F,交BC于點(diǎn)G,交AB的延長(zhǎng)線于點(diǎn)E,且AE=AC,連AG.精英家教網(wǎng)
(1)求證:FC=BE;
(2)若AD=DC=2,求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點(diǎn),AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖在直角梯形COAB中,OC∥AB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A、B、C三點(diǎn)的坐標(biāo)分別為A(8,0),B(8,11),C(0,5),點(diǎn)D為線段BC中點(diǎn),已知D點(diǎn)的橫坐標(biāo)為4,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度,沿折線OABD的路線移動(dòng),至點(diǎn)D停止,設(shè)移動(dòng)的時(shí)間為t秒

(1)求直線BC的解析式;
(2)若動(dòng)點(diǎn)P在線段OA上移動(dòng),當(dāng)t為何值時(shí),四邊形OPDC的面積是梯形COAB面積的
14
?
(3)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線OABD的路線移動(dòng)過(guò)程中,設(shè)△OPD面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案