分析 根據(jù)邊長關系進而得出三角形面積關系進而得出△FEG∽△FAD,求出四邊形BEFD的面積.
解答 解:∵AD=2BD,S△ABC=6,
∴S△ADC=$\frac{2}{3}$S△ABC=4,S△BDC=$\frac{1}{3}$S△ABC=2.
過E作EG∥AB交CD于G,
∵BE=CE,
∴CG=DG,
∴BD=2EG,
∵AD=2BD,
∴AD=4EG.
設S△EGF=x.
∵EG∥BD,
∴△CEG∽△CBD,
∴S△CEG: S△CBD=($\frac{CE}{BC}$)2=$\frac{1}{4}$,
∴S△CEG=$\frac{1}{4}$S△CBD=$\frac{1}{4}$×2=$\frac{1}{2}$,S梯形EGDB=2-$\frac{1}{2}$=$\frac{3}{2}$,
設S△FEG=x,則S四邊形BEFD=$\frac{3}{2}$-x,
∵S△ABE=$\frac{1}{2}$S△ABC=3,
∴S△ADF=S△ABE-S四邊形BEFD=3-($\frac{3}{2}$-x)=$\frac{3}{2}$+x.
∵EG∥AD,
∴△FEG∽△FAD,
∴S△FEG:S△FAD=($\frac{EG}{AD}$)2=$\frac{1}{16}$,
∴S△FAD=16S△FEG=16x,
∴16x=$\frac{3}{2}$+x,
解得x=$\frac{1}{10}$,
∴S四邊形BEFD=$\frac{3}{2}$-x=$\frac{3}{2}$-$\frac{1}{10}$=$\frac{7}{5}$.
點評 此題主要考查了相似三角形的判定與性質(zhì),正確得出△FEG的面積是解題關鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{8}{5}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com