18.在平面直角坐標(biāo)系xOy中,將拋物線y=2x2沿y軸向上平移1個單位,再沿x軸向右平移2個單位,平移后拋物線的頂點坐標(biāo)記作A,直線x=3與平移后的拋物線相交于B,與直線OA相交于C.
(1)求平移后的拋物線的解析式及點C的坐標(biāo);    
(2)求△ABC面積.

分析 (1)根據(jù)題意可知平移的規(guī)律可得函數(shù)的解析式為:y=2(x-2)2+1;
(2)有(1)求出其頂點A和B點的坐標(biāo),然后用待定系數(shù)法求出直線AO的解析式,即可求出C點的坐標(biāo),根據(jù)這三點的坐標(biāo)即可求出△ABC的面積.

解答 解:(1)將拋物線y=2x2沿y軸向上平移1個單位,則y=2x2+1,
再沿x軸向右平移兩個單位后y=2(x-2)2+1,
所以平移后拋物線的解析式為y=2(x-2)2+1;

(2)∵平移后拋物線的解析式為y=2(x-2)2+1.
∴A點坐標(biāo)為(2,1),
設(shè)直線OA解析式為y=kx,將A(2,1)代入
得k=$\frac{1}{2}$,
∴直線OA解析式為y=$\frac{1}{2}$x,
將x=3代入y=$\frac{1}{2}$x得;y=$\frac{3}{2}$,
∴C點坐標(biāo)為(3,$\frac{3}{2}$),
將x=3代入y=2(x-2)2+1得y=3,
∴B點坐標(biāo)為(3,3).
∴S△ABC=$\frac{3}{4}$.

點評 本題考查了二次函數(shù)圖象的平移,圖形面積的求法,主要考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.圓的半徑為1,AB是圓中的一條弦,AB=$\sqrt{3}$,則弦AB所對的圓周角的度數(shù)為60°或120°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.百貨商店服裝柜在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六一”國際兒童節(jié),商場決定采取適當(dāng)?shù)慕祪r措施,擴(kuò)大銷售量,增加盈利,減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價1元,那么平均每天就可多售出2件.
(1)要想平均每天銷售這種童裝盈利1200元,那么每件童裝應(yīng)降價多少元?
(2)每件童裝降價多少元時,每天銷售這種童裝的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.解方程:
(1)4-3x=6-5x                      
(2)5(x+8)-5=6(2x-7)
(3)$\frac{x+1}{2}$-$\frac{x}{3}$=1
(4)$\frac{0.1x-2}{0.2}$-$\frac{x+1}{0.1}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知關(guān)于x的一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根.
(2)若該方程的兩個實數(shù)根分別為x1,x2,且$|{x_1}-{x_2}|=\sqrt{13}$,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.解一元二次方程:
(1)x(2x-1)=3(1-2x);  
(2)2x2-1=-4x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.班上有20個女生,30個男生,每個同學(xué)的名字都由自己寫在一張小紙條上旅入一個盒中攪勻,
(1)如果班長隨機(jī)抽取一張,那么每個同學(xué)被抽中的概率是多少?男生、女生的概率分別是多少?
(2)如果班長已抽取了6張紙條,其中2張是女生,他把這6張紙條放在桌上,然后再在盒中抽取第7張,那么這時余下的每個同學(xué)被抽中的概率是多少?男生女生的概率各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.計算
(1)-14-$\frac{1}{6}$×[5-(-3)2]
(2)-42+3×(-2)2×($\frac{1}{3}$-1)÷(-1$\frac{1}{3}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖是由六塊積木搭成,這幾塊積木都是相同的正方體,請畫出這個圖形的三視圖.

查看答案和解析>>

同步練習(xí)冊答案