【題目】說明命題“等腰三角形腰上的高小于腰”是假命題的反例可以是( )
A.等腰直角三角形
B.等邊三角形
C.含30°的直角三角形
D.頂角為45°的等腰三角形
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4分別交x軸,y軸于A,B兩點,點C為OB的中點,點D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點A,B的坐標(biāo),并求直線AB與CD交點E的坐標(biāo);
(2)動點P從點C出發(fā),沿線段CD以每秒1個單位長度的速度向終點D運動;同時,動點N從點A出發(fā),沿線段AO以每秒1個單位長度的速度向終點O運動,過點P作PH⊥OA,垂足為H,連接NP.設(shè)點P的運動時間為t秒.
①若△NPH的面積為1,求t的值;
②點Q是點B關(guān)于點A的對稱點,問BP+PH+HQ是否有最小值,如果有,求出相應(yīng)的點P的坐標(biāo);如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,點D、E分別在邊BC、AC上,∠ADE=60°.
(1)求證:△ABD∽△DCE;
(2)如果AB=3,EC=,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在6×8的網(wǎng)格圖中,每個小正方形邊長均為1,點O和△ABC的頂點均為小正方形的頂點.
(1)以O(shè)為位似中心,在網(wǎng)格圖中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比為1:2.
(2)連接(1)中的AA′,求四邊形AA′C′C的周長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,AB⊥AC,AB=1,BC=,對角線BD、AC交于點O.將直線AC繞點O順時針旋轉(zhuǎn)分別交BC、AD于點E、F.
(1)試說明在旋轉(zhuǎn)過程中,AF與CE總保持相等;
(2)證明:當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能請說明理由;如果能,求出此時AC繞點O順時針旋轉(zhuǎn)的角度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)在規(guī)劃改造期間,欲拆除小區(qū)廣場邊的一根電線桿AB,已知距電線桿AB水平距離14米處是觀景臺,即BD=14米,該觀景臺的坡面CD的坡角∠CDF的正切值為2,觀景臺的高CF為2米,在坡頂C處測得電線桿頂端A的仰角為30°,D、E之間是寬2米的人行道,如果以點B為圓心,以AB長為半徑的圓形區(qū)域為危險區(qū)域.請你通過計算說明在拆除電線桿AB時,人行道是否在危險區(qū)域內(nèi)?(≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過點A(0,2)和B(1,).
(1)求該拋物線的表達式;
(2)已知點C與點A關(guān)于此拋物線的對稱軸對稱,點D在拋物線上,且點D的橫坐標(biāo)為4,求點C與點D的坐標(biāo);
(3)在(2)的條件下,將拋物線在點A,D之間的部分(含點A,D)記為圖象G,如果圖象G向下平移t(t>0)個單位后與直線BC只有一個公共點,求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com