【題目】如圖所示,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四邊形ABCD的面積.

【答案】36

【解析】試題分析:根據(jù)勾股定理求得BD=5;由勾股定理的逆定理判定△BCD為直角三角形,則四邊形ABCD的面積=△ABD的面積+△BCD的面積.

試題解析:△ABD中,∠A是直角,AB=3AD=4,

由勾股定理得 BD2=AD2+AB2=25.則BD=5

△BCD中,BC=12,DC=13,

∴CD2=BD2+BC2=169

∴△BCD為直角三角形,且∠DBC=90°

S四邊形ABCD=SABD+SBCD=ADAB+BDBC=×4×3+×5×12=36

即四邊形ABCD的面積是36

考點(diǎn): 1.勾股定理;2.勾股定理的逆定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)OECD中點(diǎn),連結(jié)OE.過(guò)點(diǎn)CCFBD交線段OE的延長(zhǎng)線于點(diǎn)F,連結(jié)DF.求證:

(1)ODE≌△FCE;

(2)四邊形ODFC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+n與x軸交于點(diǎn)A,與y軸交于點(diǎn)B(點(diǎn)A與點(diǎn)B不重合),拋物線y=﹣ x2﹣2x+c經(jīng)過(guò)點(diǎn)A、B,拋物線的頂點(diǎn)為C.

(1)∠BAO=°;
(2)求tan∠CAB的值;
(3)在拋物線上是否存在點(diǎn)P,能夠使∠PCA=∠BAC?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)D、E分別在BC、AC邊上,且∠ADE=60°,AB=3,BD=1,則EC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下列一段文字,再解答問(wèn)題
已知在平面內(nèi)有兩點(diǎn),其兩點(diǎn)間的距離公式為,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡(jiǎn)化為
已知點(diǎn),,試求A,B兩點(diǎn)間的距離;
已知點(diǎn)A,B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為5,點(diǎn)B的縱坐標(biāo)為,試求AB兩點(diǎn)間的距離;
已知點(diǎn),,判斷線段ABBC,AC中哪兩條是相等的?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在某一次實(shí)驗(yàn)中,測(cè)得兩個(gè)變量之間的關(guān)系如下表所示:

x

1

2

3

4

12

y

12.03

5.98

3.03

1.99

1.00

請(qǐng)你根據(jù)表格回答下列問(wèn)題:
①這兩個(gè)變量之間可能是怎樣的函數(shù)關(guān)系?你是怎樣作出判斷的?請(qǐng)你簡(jiǎn)要說(shuō)明理由;
②請(qǐng)你寫(xiě)出這個(gè)函數(shù)的解析式;
③表格中空缺的數(shù)值可能是多少?請(qǐng)你給出合理的數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),過(guò)點(diǎn)C作⊙O的切線,交BA的延長(zhǎng)線交于點(diǎn)D,過(guò)點(diǎn)B作BE⊥BA,交DC延長(zhǎng)線于點(diǎn)E,連接OE,交⊙O于點(diǎn)F,交BC于點(diǎn)H,連接AC.
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB= ,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系內(nèi),一次函數(shù)ykxb(k0,b<0)的圖象分別與x軸、y軸和直線x4相交于AB,C三點(diǎn),直線x4x軸交于點(diǎn)D,四邊形OBCD(O是坐標(biāo)原點(diǎn))的面積是10,若點(diǎn)A的橫坐標(biāo)是-,求這個(gè)一次函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y= x﹣ 與x,y軸分別交于點(diǎn)A,B,與反比例函數(shù)y= (k>0)圖象交于點(diǎn)C,D,過(guò)點(diǎn)A作x軸的垂線交該反比例函數(shù)圖象于點(diǎn)E.

(1)求點(diǎn)A的坐標(biāo).
(2)若AE=AC.
①求k的值.
②試判斷點(diǎn)E與點(diǎn)D是否關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案