【題目】某服裝店專營一批進價為每件200元的品牌襯衫,每件售價為300元時,每天可售出40件,若每件降價10元,則第天多售出10件,請根據(jù)以上信息解答下列問題:

(1)為了使銷售該品牌襯衫每天獲利4500元,并且讓利于顧客,每件售價應為多少元;

(2)該服裝店將該品牌的襯衫銷售完,在補貨時廠家只剩100件,經(jīng)協(xié)商每件降價a元,全部拿回。按(1)中的價格售出80件后,剩余的按八折銷售。售完這100件襯衫獲利20%,求a的值。

【答案】(1)該品牌襯衫每件售價應為250元;(2)a的值是40

【解析】試題分析:(1)表示出每件商品的利潤和銷量進而得出等式求出答案;
(2)分別表示出100件商品的利潤進而得出等式求出答案.

試題解析:

(1)設該品牌襯衫每件售價應為x元,根據(jù)題意,得

解,得

因為要讓利于顧客,所以應采用降價銷售且降得越多越好,

∴x=250.

答:該品牌襯衫每件售價應為250元.

(2)方法一:根據(jù)題意,得

解,得a=40

答:a的值是40

方法二:根據(jù)題意:得

解,得a=40

經(jīng)檢驗a=40是原方程的解。

答:a的值是40

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為響應國家的“節(jié)能減排”政策,某廠家開發(fā)了一種新型的電動車,如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°和31°,AT⊥MN,垂足為T,大燈照亮地面的寬度BC的長為m.

1)求BT的長(不考慮其他因素).

(2)一般正常人從發(fā)現(xiàn)危險到做出剎車動作的反應時間是0.2s,從發(fā)現(xiàn)危險到電動車完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車,從做出剎車動作到電動車停止的剎車距離是請判斷該車大燈的設計是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計),并說明理由.

(參考數(shù)據(jù):sin22°,tan22°,sin31°tan31°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線分別交x軸、y軸于AB兩點,拋物線經(jīng)過AB兩點,點C是拋物線與x軸的另一個交點(與A點不重合).

1)求拋物線的解析式;

2)求△ABC的面積;

3)在拋物線的對稱軸上,是否存在點M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是( 。

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖(1)在RtΔABC中,∠ACB=900,∠B=600,在圖中作出∠ACB的三等分線CD,CE.(要求:尺規(guī)作圖,保留痕跡,不定作法)

(2)由(1)知,我們可以用尺規(guī)作出直角的三等分線,但是僅僅使用尺規(guī)卻不能把任意一個角分成三等分,為此,人們發(fā)明了許多等分角的機械器具,如圖(2)是用三張硬紙片自制的一個最簡單的三分角器,與半圓O相接的AB帶的長度與半圓的半徑相等:BD帶的長度任意,它的一邊與直線AC形成一個直角,且志半圓相切于點B,假設需要將∠KSM三等分,如圖(3),首先將角的頂點S置于BD上,角的一邊SK經(jīng)過點A,另一邊SM與半圓相切,連接SO,則SB,SO為∠KSM的三等分線,請你證明。

圖(1) 圖(2) 圖(3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以正方形ABCD的邊AD作等邊ADE,則∠BEC的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y=kx的圖像經(jīng)過點A,點A在第四象限.過點AAHx軸,垂足為點H,點A的橫坐標為3,且AOH的面積為4.5

1)求該正比例函數(shù)的解析式;

2)在x軸上是否存在一點P,使AOP的面積為6?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在△ABC中,∠A90°,ABAC,DBC的中點,E,F分別是AB,AC上的點,且BEAF

1)請你判斷△DEF形狀,并說明理由;

2)若BE2cm,CF4cm,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCD中,E是AD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.

(1)求證:△BGF≌△FHC;

(2)設AD=a,當四邊形EGFH是正方形時,求矩形ABCD的面積.

查看答案和解析>>

同步練習冊答案