(2006•中山)如圖所示,AB是⊙O的弦,半徑OC、OD分別交AB于點E、F,且AE=BF,請你找出線段OE與OF的數(shù)量關(guān)系,并給予證明.

【答案】分析:OE=OF,可以利用SAS判定△OAE≌△OBF,根據(jù)全等三角形的對應邊相等,可得到OE=OF.
解答:解:OE=OF,(2分)
證明:連接OA,OB,
∵OA=OB,
∴∠OAB=∠OBA.即∠OAE=∠OBF.
∴在△OAE與△OBF中,

∴△OAE≌△OBF(SAS).
∴OE=OF.
點評:考查圓的性質(zhì),全等三角形的判定等知識的綜合應用及推理論證能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年浙江省名校中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

(2006•中山)如圖,圖中的小方格都是邊長為1的正方形,△ABC與△A′B′C′是關(guān)于點0為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.
(1)畫出位似中心點0;
(2)求出△ABC與△A′B′C′的位似比;
(3)以點0為位似中心,再畫一個△A1B1C1,使它與△ABC的位似比等于1.5.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣東省中山市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•中山)如圖,圖中的小方格都是邊長為1的正方形,△ABC與△A′B′C′是關(guān)于點0為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.
(1)畫出位似中心點0;
(2)求出△ABC與△A′B′C′的位似比;
(3)以點0為位似中心,再畫一個△A1B1C1,使它與△ABC的位似比等于1.5.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣東省中山市中考數(shù)學試卷(課標卷)(解析版) 題型:填空題

(2006•中山)如圖,已知圓柱體底面圓的半徑為,高為2,AB、CD分別是兩底面的直徑,AD、BC是母線若一只小蟲從A點出發(fā),從側(cè)面爬行到C點,則小蟲爬行的最短D路線的長度是    (結(jié)果保留根式).

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣東省中考數(shù)學試卷(課標卷)(解析版) 題型:選擇題

(2006•中山)如圖所示,在?ABCD中,對角線AC、BD交于點O,下列式子中一定成立的是( )

A.AC⊥BD
B.OA=OC
C.AC=BD
D.A0=OD

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣東省中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•中山)如圖,在?ABCD中,∠DAB=60°,點E、F分別在CD、AB的延長線上,且AE=AD,CF=CB.
(1)求證:四邊形AFCE是平行四邊形;
(2)若去掉已知條件的“∠DAB=60°”,上述的結(jié)論還成立嗎?若成立,請寫出證明過程;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案