【題目】已知直線y=2x-5與x軸和y軸分別交于點(diǎn)A和點(diǎn)B,拋物線y=-x2+bx+c的頂點(diǎn)M在直線AB上,且拋物線與直線AB的另一個(gè)交點(diǎn)為N.
(1)如圖,當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),求拋物線的解析式;
(2)在(1)的條件下,求點(diǎn)N的坐標(biāo)和線段MN的長;
(3)拋物線y=-x2+bx+c在直線AB上平移,是否存在點(diǎn)M,使得△OMN與△AOB相似?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
【答案】(1)拋物線的解析式;
(2)點(diǎn)N的坐標(biāo)為,線段MN的長為;
(3)存在點(diǎn)M(2,-1),或(4,3)
【解析】試題分析:(1)①首先求得直線與x軸,y軸的交點(diǎn)坐標(biāo),利用二次函數(shù)的對稱軸的公式即可求解;
②N在直線上同時(shí)在二次函數(shù)上,因而設(shè)N的橫坐標(biāo)是a,則在兩個(gè)函數(shù)上對應(yīng)的點(diǎn)的縱坐標(biāo)相同,據(jù)此即可求得a的值,即N的坐標(biāo),過N作NC⊥x軸,垂足為C,利用勾股定理即可求得MN的長;
(2)△AOB的三邊長可以求得OB=2OA,AB邊上的高可以求得是,拋物線y=-x2+bx+c在直線AB上平移,則MN的長度不變,根據(jù)(1)的結(jié)果是2,MN是AB邊上的高的二倍,當(dāng)OM⊥AB或ON⊥AB時(shí),兩個(gè)三角形相似,據(jù)此即可求得M的坐標(biāo).
試題解析:(1)①∵直線y=2x-5與x軸和y軸交于點(diǎn)A和點(diǎn)B,
∴A(,0),B(0,-5).
當(dāng)頂點(diǎn)M與點(diǎn)A重合時(shí),
∴M(,0).
∴拋物線的解析式是:y=(x)2.即y=x2+5x.
②∵N在直線y=2x-5上,設(shè)N(a,2a-5),又N在拋物線y=x2+5x上,
∴2a5=a2+5a.
解得a1=,a2=(舍去)
∴N(,4).
過N作NC⊥x軸,垂足為C.
∵N(,4),
∴C(,0).
∴NC=4.MC=OMOC==2.
∴MN=;
(2)設(shè)M(m,2m-5),N(n,2n-5).
∵A(,0),B(0,-5),
∴OA=,OB=5,則OB=2OA,AB=,
當(dāng)∠MON=90°時(shí),∵AB≠M(fèi)N,且MN和AB邊上的高相等,因此△OMN與△AOB不能全等,
∴△OMN與△AOB不相似,不滿足題意.
當(dāng)∠OMN=90°時(shí), ,即,解得OM=,
則m2+(2m-5)2=()2,解得m=2,
∴M(2,-1);
當(dāng)∠ONM=90°時(shí), ,即,解得ON=,
則n2+(2n-5)2=()2,解得n=2,
∵OM2=ON2+MN2,
即m2+(2m-5)2=5+(2)2,
解得:m=4,
則M的坐標(biāo)是M(4,3).
故M的坐標(biāo)是:(2,-1)或(4,3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程kx2﹣2x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于簡單隨機(jī)抽樣,每個(gè)個(gè)體被抽到的概率( )
A. 相等B. 不相等
C. 可相等可不相等D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a=﹣(0.3)2 , b=﹣3﹣2 , c=(﹣ )﹣2 , d=(﹣ )0 , 用“<”連接a、b、c、d為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小島A在港口P的南偏西45°方向,距離港口81海里處.甲船從A出發(fā),沿AP方向以9海里/時(shí)的速度駛向港口,乙船從港口P出發(fā),沿南偏東60°方向,以18海里/時(shí)的速度駛離港口,現(xiàn)兩船同時(shí)出發(fā).
(1)出發(fā)后幾小時(shí)兩船與港口P的距離相等;
(2)出發(fā)后幾小時(shí)乙船在甲船的正東方向?(結(jié)果精確到0.1小時(shí))(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BD是對角線,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,試判斷四邊形AECF是不是平行四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年6月29日,新建的無錫文化旅游城將盛大開業(yè),開業(yè)后預(yù)計(jì)接待游客量約20 000 000 人次,這個(gè)年接待課量可以用科學(xué)記數(shù)法表示為________人次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)點(diǎn)同學(xué)對數(shù)據(jù)26,36,36,46,5■,52進(jìn)行統(tǒng)計(jì)分析,發(fā)現(xiàn)其中一個(gè)兩位數(shù)被墨水涂污看不到了,則計(jì)算結(jié)果與被涂污數(shù)字無關(guān)的是( )
A. 平均數(shù)B. 中位數(shù)C. 方差D. 標(biāo)準(zhǔn)差
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com