(本題10分)如圖直角梯形ABCD中,AD∥BC,AB⊥BC ,AD=2,AB=8,CD=10.

(1)求BC的長(zhǎng);

(2)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以1cm/s的速度沿B→A→D方向向點(diǎn)D運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿C→D方向向點(diǎn)D運(yùn)動(dòng);過(guò)點(diǎn)Q作QF⊥BC于點(diǎn)F.若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)隨之結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為t秒.問(wèn):在運(yùn)動(dòng)過(guò)程中,是否存在這樣的t,使得以P、D、Q為頂點(diǎn)的三角形恰好是以DQ為一腰的等腰三角形?若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說(shuō)明理由.

 

        

 

 

 

解:(1)過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E

       ∵四邊形ABCD是直角梯形      ∴四邊形ABED是矩形

       ∴AD=BE=2,AB=DE=8…………………(1分)

       在Rt△DEC中,CE===6 …………………(2分)

      ∴BC =8. …………………(3分)

(2)(i)當(dāng)0≤t≤8時(shí),過(guò)點(diǎn)Q 作QG⊥AB于點(diǎn)G,過(guò)點(diǎn)Q作QF⊥CB于點(diǎn)F。

∵BP=t,CQ=t,      ∴AP=8-t,DQ=10-t,…………(4分)

∵DE⊥BC,QF⊥CB

∴△CQF∽△CDE

      ∴CF=,QF=,

∴PG==,QG=8-

=(8-t)2+22=t2+16t+68,

∴PQ2=QG2+PG2=(8-)2+()2=

若DQ=PD,則(10-t)2= t2+16t+68,解得:t=8;………………(6分)

若DQ=PQ,則(10-t)2=,

解得:t1= ,t2=>8(舍去),

此時(shí)t=;             ……… ………(8分)

(ii)當(dāng)8<t<10時(shí),PD=DQ=10-t,

      ∴此時(shí)以DQ為一腰的等腰△DPQ恒成立;………………(9分)

   而當(dāng)t=10時(shí),點(diǎn)P、D、Q三點(diǎn)重合,無(wú)法構(gòu)成三角形;…………(10分)

綜上,當(dāng)t=或8≤t<10時(shí),以P、D、Q為頂點(diǎn)的三角形恰好是以DQ為一腰的等腰三角形.                                

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

.(本題10分) 小劉同學(xué)在課外活動(dòng)中觀察吊車的工作過(guò)程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點(diǎn)O距離地面的高OO′=2米.當(dāng)?shù)醣垌敹擞?i>A點(diǎn)抬升至A′點(diǎn)(吊臂長(zhǎng)度不

變)時(shí),地面B處的重物(大小忽略不計(jì))被吊至B′處,緊繃著的吊纜A′B′=AB.且cosA=,sinA′=

1.(1) 求此重物在水平方向移動(dòng)的距離及在豎直方向移動(dòng)的距離;

2.(2) 若這臺(tái)吊車工作時(shí)吊桿最大水平旋轉(zhuǎn)角度為120°,吊桿與水平線的傾角可以從30°轉(zhuǎn)到60°,求吊車工作時(shí),工作人員不能站立的區(qū)域的面積。

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

.(本題10分) 小劉同學(xué)在課外活動(dòng)中觀察吊車的工作過(guò)程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點(diǎn)O距離地面的高OO′=2米.當(dāng)?shù)醣垌敹擞?i>A點(diǎn)抬升至A′點(diǎn)(吊臂長(zhǎng)度不
變)時(shí),地面B處的重物(大小忽略不計(jì))被吊至B′處,緊繃著的吊纜A′B′=AB.且cosA=,sinA′=
【小題1】(1) 求此重物在水平方向移動(dòng)的距離及在豎直方向移動(dòng)的距離;
【小題2】(2) 若這臺(tái)吊車工作時(shí)吊桿最大水平旋轉(zhuǎn)角度為120°,吊桿與水平線的傾角可以從30°轉(zhuǎn)到60°,求吊車工作時(shí),工作人員不能站立的區(qū)域的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省泰興市濟(jì)川中學(xué)九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

.(本題10分) 小劉同學(xué)在課外活動(dòng)中觀察吊車的工作過(guò)程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點(diǎn)O距離地面的高OO′=2米.當(dāng)?shù)醣垌敹擞?i>A點(diǎn)抬升至A′點(diǎn)(吊臂長(zhǎng)度不
變)時(shí),地面B處的重物(大小忽略不計(jì))被吊至B′處,緊繃著的吊纜A′B′=AB.且cosA=,sinA′=
【小題1】(1) 求此重物在水平方向移動(dòng)的距離及在豎直方向移動(dòng)的距離;
【小題2】(2) 若這臺(tái)吊車工作時(shí)吊桿最大水平旋轉(zhuǎn)角度為120°,吊桿與水平線的傾角可以從30°轉(zhuǎn)到60°,求吊車工作時(shí),工作人員不能站立的區(qū)域的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省鎮(zhèn)江市八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

(本題10分) 
在向紅星鎮(zhèn)居民介紹王家莊位置的時(shí)候,我們可以這樣說(shuō):如圖,在以紅星鎮(zhèn)為原點(diǎn),正東方向?yàn)閤軸正方向,正北方向?yàn)閥軸正方向的平面直角坐標(biāo)系(1單位長(zhǎng)度表示的實(shí)際距離為1km)中,王家莊的坐標(biāo)為(5,5);也可以說(shuō),王家莊在紅星鎮(zhèn)東北方向km的地方。
 
還有一種方法廣泛應(yīng)用于航海、航空、氣象、軍事等領(lǐng)域。如右下圖:在紅星鎮(zhèn)所建的雷達(dá)站O的雷達(dá)顯示屏上,把周角每15°分成一份,正東方向?yàn)?°,相鄰兩圓之間的距離為1個(gè)單位長(zhǎng)度(1單位長(zhǎng)度表示的實(shí)際距離為1km),現(xiàn)發(fā)現(xiàn)2個(gè)目標(biāo),我們約定用(10,15°)表示點(diǎn)M在雷達(dá)顯示器上的坐標(biāo),則:

(1)點(diǎn)N可表示為          ;王家莊位置可表示為          ;點(diǎn)N關(guān)于雷達(dá)站點(diǎn)0成中心對(duì)稱的點(diǎn)P的坐標(biāo)為         ;
(2)S△OMP=                 ;
(3)若有一家大型超市A在圖中(4,30°)的地方,請(qǐng)直接標(biāo)出點(diǎn)A,并將超市A與雷達(dá)站O連接,現(xiàn)準(zhǔn)備在雷達(dá)站周圍建立便民服務(wù)店B,使得△ABO為底角30°的等腰三角形,請(qǐng)直接寫出B點(diǎn)在雷達(dá)顯示屏上的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省鎮(zhèn)江市八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題10分) 

在向紅星鎮(zhèn)居民介紹王家莊位置的時(shí)候,我們可以這樣說(shuō):如圖,在以紅星鎮(zhèn)為原點(diǎn),正東方向?yàn)閤軸正方向,正北方向?yàn)閥軸正方向的平面直角坐標(biāo)系(1單位長(zhǎng)度表示的實(shí)際距離為1km)中,王家莊的坐標(biāo)為(5,5);也可以說(shuō),王家莊在紅星鎮(zhèn)東北方向km的地方。

 

還有一種方法廣泛應(yīng)用于航海、航空、氣象、軍事等領(lǐng)域。如右下圖:在紅星鎮(zhèn)所建的雷達(dá)站O的雷達(dá)顯示屏上,把周角每15°分成一份,正東方向?yàn)?°,相鄰兩圓之間的距離為1個(gè)單位長(zhǎng)度(1單位長(zhǎng)度表示的實(shí)際距離為1km),現(xiàn)發(fā)現(xiàn)2個(gè)目標(biāo),我們約定用(10,15°)表示點(diǎn)M在雷達(dá)顯示器上的坐標(biāo),則:

(1)點(diǎn)N可表示為          ;王家莊位置可表示為          ;點(diǎn)N關(guān)于雷達(dá)站點(diǎn)0成中心對(duì)稱的點(diǎn)P的坐標(biāo)為         ;

(2)S△OMP=                 

(3)若有一家大型超市A在圖中(4,30°)的地方,請(qǐng)直接標(biāo)出點(diǎn)A,并將超市A與雷達(dá)站O連接,現(xiàn)準(zhǔn)備在雷達(dá)站周圍建立便民服務(wù)店B,使得△ABO為底角30°的等腰三角形,請(qǐng)直接寫出B點(diǎn)在雷達(dá)顯示屏上的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案