【題目】如圖,在中,分別為邊的中點(diǎn),是對(duì)角線,過點(diǎn)的延長線于點(diǎn)

1)求證:

2)若,求證:四邊形是菱形.

【答案】1)證明見詳解;(2)證明見詳解

【解析】

(1)根據(jù)已知條件證明AE=CF,AE//CF,從而得出四邊形CEAF是平行四邊形,即可證明CE//AF;
(2)先證明AF=CF,再根據(jù)鄰邊相等的平行四邊形是菱形,從而得出結(jié)論.

證明:(1)中, AB//CD, AB=CD,
E、F分別為邊 AB CD的中點(diǎn),
CF=CD, AE=AB,
CF=AE
∴四邊形 CEAF為平行四邊形,
CE//AF
(2)BG//AC,
∴∠G=DAC=90°,
DAC為直角三角形,
又∵F為邊CD的中點(diǎn),
AF=CD=CF,
又∵四邊形 CEAF為平行四邊形,
∴四邊形 CEAF為菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場.現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下面直角坐標(biāo)系中,已知A0,a),Bb,0),Cb,c)三點(diǎn),其中a、bc滿足關(guān)系式+b32=0,(c42≤0

1 a=_____、b=_____、c=_____

2)求四邊形AOBC的面積;

3)如果在第二象限內(nèi)有一點(diǎn)Pm,),且四邊形ABOP的面積與ABC的面積相等 ,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ABC,∠C=90°,D為BC的中點(diǎn),以AC為直徑的⊙O交AB于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AE:EB=1:2,BC=6,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,存在直線和直線

1)直接寫出兩點(diǎn)的坐標(biāo);

2)求出直線、直線的交點(diǎn)及兩條直線與軸圍成的三角形的面積;

3)結(jié)合圖象,直接寫出時(shí)的取值范圍_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點(diǎn)D,AE平分∠BAC交邊BC于點(diǎn)E,經(jīng)過點(diǎn)A、D、E的圓的圓心F恰好在y軸上,⊙F與y軸相交于另一點(diǎn)G.
(1)求證:BC是⊙F的切線;
(2)若點(diǎn)A、D的坐標(biāo)分別為A(0,﹣1),D(2,0),求⊙F的半徑;
(3)試探究線段AG、AD、CD三者之間滿足的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,BC是⊙O的直徑,弦AF交BC于點(diǎn)E,延長BC到點(diǎn)D,連接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.
(1)求證:AD是⊙O的切線;
(2)若⊙O的半徑為5,CE=2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九(2)班同學(xué)為了了解2019年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)的部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理:

月均用水量(噸)

頻數(shù)

頻率

6

0.12

________

0.24

16

0.32

10

0.20

4

________

2

0.04

請(qǐng)解答以下問題:

1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

2)月均用水量的中位數(shù)落在第________小組;

3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計(jì),該小區(qū)月均用水量超過20噸的家庭大約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,直線DA與⊙O相切于點(diǎn)A,DO交⊙O于點(diǎn)C,連接BC,若∠ABC=21°,則∠ADC的度數(shù)為( )

A.46°
B.47°
C.48°
D.49°

查看答案和解析>>

同步練習(xí)冊(cè)答案