【題目】某山的山頂B處有一個觀光塔,已知該山的山坡面與水平面的夾角∠BDC為30°,山高BC為100米,點E距山腳D處150米,在點E處測得觀光塔頂端A的仰角為60°,則觀光塔AB的高度是( )
A.50米
B.100米
C.125米
D.150米
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計劃一次購進(jìn)兩種型號的電腦共50臺,其中A型電腦的進(jìn)貨量不少于14臺,B型電的進(jìn)貨量不少于A型電腦的2倍,那么該商店有幾種進(jìn)貨方案?該商場購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大?
(3)實際進(jìn)貨時,廠家對A型電腦出廠價下調(diào)m (0<m<100)元,若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這50臺電腦銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,A,C,且滿足過點C作CB⊥軸于點B.
(1)
(2)在軸上是否存在點P,使得三角形ABC和三角形ACP的面積相等?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)如圖②,若過點B作BD∥AC交軸于點D,且AE、DE分別平分∠CAB、∠ODB,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.
其中正確的結(jié)論有( )
A. 5個 B. 4個
C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與思考:
閱讀理解問題——代數(shù)問題幾何化 1.閱讀理解以下文字: 我們知道,多項式的因式分解就是將一個多項式化成幾個整 式的積的形式.通過因式分解,我們常常將一個次數(shù)比較高 的多項式轉(zhuǎn)化成幾個次數(shù)較低的整式的積,來達(dá)到降次化簡 的目的.這個思想可以引領(lǐng)我們解決很多相對復(fù)雜的代數(shù)問 題.
例如:方程 2x2+3x=0 就可以這樣來解:
解:原方程可化為 x(2x+3)=0,
所以x=0 或者 2x+3=0.
解方程 2x+3=0,得 x=- . ∴原方程的解為 x=0或x=- .
根據(jù)你的理解,結(jié)合所學(xué)知識,解決以下問題:
(1)解方程:3x2-x=0
(2)解方程:(x+3)2-4x2=0;
(3)已知△ABC 的三邊長為 4,x,y,請你判斷代數(shù)式y2 -8y+16-x2的值的符號.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE和∠BAC的外角平分線AD相交于點P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點H,交BC的延長線于點F,連接AF交DH于點G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:對于形如這樣的二次三項式,可以用公式法將它分解成的形式.但對于二次三項式,就不能直接運用公式了.此時,我們可以在二次三項式中先加上一項,使它與的和成為一個完全平方式,再減去,整個式子的值不變,于是有:
像這樣,先添一適當(dāng)項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”,利用“配方法",解決下列問題:
(1)分解因式:.
(2)比較代數(shù)式與的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.
(1)試判斷∠DEF與∠B的大小關(guān)系,并說明理由;
(2)若D、E、F分別是AB、AC、CD邊上的中點,S△DEF=4,求S△ABC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com