(2009•泰安)如圖1是某公司的圖標(biāo),它是由一個(gè)扇環(huán)形和圓組成,其設(shè)計(jì)方法如圖2所示,ABCD是正方形,⊙O是該正方形的內(nèi)切圓,E為切點(diǎn),以B為圓心,分別以BA、BE為半徑畫扇形,得到如圖所示的扇環(huán)形,圖1中的圓與扇環(huán)的面積比為   
【答案】分析:要求圖1中的圓與扇環(huán)的面積比,就要先根據(jù)面積公式先計(jì)算出面積.再計(jì)算比.
解答:解:設(shè)正方形的邊長(zhǎng)為2,則圓的面積為π,扇環(huán)的面積為(4π-π)=π,
所以圖1中的圓與扇環(huán)的面積比為4:9.
點(diǎn)評(píng):此題主要考查扇環(huán)面積的求法.求不規(guī)則的圖形的面積,可以轉(zhuǎn)化為幾個(gè)規(guī)則圖形的面積的和或差來求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年河南省鄭州市新密市興華公學(xué)九年級(jí)(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•泰安)如圖,△OAB是邊長(zhǎng)為2的等邊三角形,過點(diǎn)A的直線+m與x軸交于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)求過A、O、E三點(diǎn)的拋物線解析式;
(3)若點(diǎn)P是(2)中求出的拋物線AE段上一動(dòng)點(diǎn)(不與A、E重合),設(shè)四邊形OAPE的面積為S,求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2009•泰安)如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點(diǎn)E,交AB于點(diǎn)D.若梯形ODBC的面積為3,則雙曲線的解析式為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:選擇題

(2009•泰安)如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點(diǎn)E,交AB于點(diǎn)D.若梯形ODBC的面積為3,則雙曲線的解析式為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省泰安市初中學(xué)業(yè)考試數(shù)學(xué)樣卷(解析版) 題型:選擇題

(2009•泰安)如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點(diǎn)E,交AB于點(diǎn)D.若梯形ODBC的面積為3,則雙曲線的解析式為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市上杭三中九年級(jí)(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•泰安)如圖,△OAB是邊長(zhǎng)為2的等邊三角形,過點(diǎn)A的直線+m與x軸交于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)求過A、O、E三點(diǎn)的拋物線解析式;
(3)若點(diǎn)P是(2)中求出的拋物線AE段上一動(dòng)點(diǎn)(不與A、E重合),設(shè)四邊形OAPE的面積為S,求S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案