如圖所示,在平面直角坐標(biāo)系xoy中,Rt△AOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2精英家教網(wǎng),OB=4,現(xiàn)將Rt△AOB繞著直角頂點O按逆時針方向旋轉(zhuǎn)90°得到△COD,已知一拋物線經(jīng)過C、D、B三點.
(1)求這條拋物線的解析式;
(2)連接DB,P是線段BC上一動點(P不與B、C重合),過點P作PE∥BD交CD于E,則當(dāng)△DEP面積最大時,求PE的解析式;
(3)作點D關(guān)于此拋物線對稱軸的對稱點F,連接CF交對稱軸于點M,拋物線上一動點R,x軸上一動點Q,則在拋物線上是否存在點R,x軸上是否存在點Q,使得以C、M、Q、R為頂點的四邊形是平行四邊形?如果存在,求出Q點的坐標(biāo);如果不存在,請說明理由.
分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì),易求得OC、OD的長,即可得出C、D的坐標(biāo),用待定系數(shù)法即可求出拋物線的解析式.
(2)過E作x軸的垂線,設(shè)垂足為H;可設(shè)出P點坐標(biāo),根據(jù)△CPE∽△CBD得出的對應(yīng)高和對應(yīng)邊的比,求出EH的表達(dá)式,即可得出關(guān)于△CEP的面積和P點橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出P、E坐標(biāo),進(jìn)而可用待定系數(shù)法求出直線PE的解析式.
(3)此題要分兩種情況討論:①以CM為邊,②以CM為對角線;可根據(jù)平行四邊形的性質(zhì)得出Q點的縱坐標(biāo),代入拋物線的解析式中即可求出Q點坐標(biāo).
解答:精英家教網(wǎng)解:(1)∵△COD≌△AOB
∴OC=OA,OD=OB
∴OC=2,OD=4
∴C(-2,0)D(0,4)B(4,0)
∴設(shè)此拋物線的解析式y(tǒng)=ax2+bx+4(a≠0)
將C(-2,O)B(4,0)代入
4a-2b+4=0
16a+4b+4=0

a=-
1
2
b=1

∴拋物線的解析式為:y=-
1
2
x2+x+4
(4分)

精英家教網(wǎng)(2)過E作EH⊥x軸,
∵S△DEP=S△DCP-S△ECP
=
1
2
CP•OD-
1
2
CP•EH
=
1
2
CP(OD-EH)
設(shè)點P(m,0)
∵P在BC之間運(yùn)動
∴CP=m+2
∵PE∥BD
∴△CEP∽△CDB
EH
OD
=
CP
BC

EH
4
=
m+2
6

EH=
2m+4
3

∴S△DEP=
1
2
(m+2)(4-
2m+4
3
)

=-
1
3
(m-1)2+3
(6分)
∴當(dāng)m=1時,S△DEP有最大值為3,此時P(1,0)(7分)
又∵D(0,4)
又設(shè)BD的解析式y(tǒng)=kx+4(k≠0)
將B(4,0)代入0=4k+4
k=-1
∴BD:y=-x+4
∵PE∥BD
∴設(shè)PE:y=-x+b,
將P(1,0)代入
即0=-1+b,
解得b=1
∴PE的解析式為:y=-x+1;(8分)

(3)存在
∵D(0,4)F(2,4)
CF:y=x+2
∴M(1,3)
若以CM為邊
在y=-
1
2
x2+x+4
中令y=3
解得:x1=1+
3
,x2=1-
3

∴Q1(-2+
3
,0)Q2(-2-
3
,0)(10分)
令y=-3,-
1
2
x2+x+4=-3

解得:x1=1+
15
,x2=1-
15

Q3(4+
15
,0)Q4(4-
15
,0)(12分)
若以CM為對角線,Q5與Q1重合
∴共有四個點Q.
點評:此題考查了二次函數(shù)解析式的確定、圖形面積的求法、平行四邊形的判定和性質(zhì)等知識.綜合性強(qiáng),能力要求較高.考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網(wǎng)交于點A,過點A分別作x軸、y軸的垂線,垂足為點B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖所示,在平面直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(-2,0)和(2,0).月牙①繞點B順時針旋轉(zhuǎn)90°得到月牙②,則點A的對應(yīng)點A′的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系中,一顆棋子從點P處開始依次關(guān)于點A,B,C作循環(huán)對稱跳動,即第一次從點P跳到關(guān)于點A的對稱點M處,第二次從點M跳到關(guān)于點B的對稱點N處,第三次從點N跳到關(guān)于點C的對稱點處,…如此下去.
(1)在圖中標(biāo)出點M,N的位置,并分別寫出點M,N的坐標(biāo):
 

(2)請你依次連接M、N和第三次跳后的點,組成一個封閉的圖形,并計算這個圖形的面積;
(3)猜想一下,經(jīng)過第2009次跳動之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xoy中,有一組對角線長分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點重合),依上述排列方式,對角線長為n的第n個正方形的頂點An的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過A(-1,0)、B(3,0)兩點,拋物線與y軸交點為C,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線的解析式,并寫出頂點D的坐標(biāo);
(2)如果P點的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當(dāng)s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為P',請直接寫出P'點坐標(biāo),并判斷點P'是否在該拋物線上.

查看答案和解析>>

同步練習(xí)冊答案