小明設(shè)計(jì)了一個(gè)“簡易量角器”:如圖,在△ABC中,∠C=90°,∠A=30°,CA=30 cm,在AB邊上有一系列點(diǎn)P1,P2,P3…P8,使得∠P1CA=10°,∠P2CA=20°,∠P3CA=30°,…∠P8CA=80°.

(1)求P3A的長(結(jié)果保留根號(hào));
(2)求P5A的長(結(jié)果精確到1 cm,參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,≈1.7);
(3)小明發(fā)現(xiàn)P1,P2,P3…P8這些點(diǎn)中,相鄰兩點(diǎn)距離都不相同,于是計(jì)劃用含45°的直角三角形重新制作“簡易量角器”,結(jié)果會(huì)怎樣呢?請你幫他繼續(xù)探究.
(1)10 cm(2)24cm(3)在P1,P2,P3…P8這些點(diǎn)中,有三對(duì)相鄰點(diǎn)距離相等

試題分析: 
解:(1)連接P3C.

∵∠P3CA=∠A,∴P3C=P3A.
又∵∠P3CB=∠BCA-∠P3CA=60°,且∠B=∠BCA-∠A=60°,
∴∠P3CB=∠B,∴P3C=P3B,
∴P3A=P3B=AB.
在Rt△ABC中,cos∠A=,
∴AB==20 cm.
∴P3A=AB=10 cm.  
(2)連接P5C,作P5D⊥CA,垂足為D.
由題意得,∠P5CA=50°,設(shè)CD=x cm.
在Rt△P5DC中,tan∠P5CD=,∴P5D=CD·tan∠P5CD=1.2x.
在Rt△P5DA中,tan∠A=,∴DA==1.2x.
∵CA=30 cm,∴CD+DA=30 cm.
∴x+1.2x=30.∴x=
在Rt△P5DA中,sin∠A=,∴P5A==2.4x.
∴P5A=2.4×≈24 cm. 
(3)如圖,在△ABC中,∠C=90°,∠A=45°.

當(dāng)P1,P2,P3…P8在斜邊上時(shí).
∵∠B=90°-∠A=45°,
∴∠B=∠A,∴AC=BC.
在△P1CA和△P8CB中,
∵∠P1CA=∠P8CB,AC=BC,∠A=∠B,
∴△P1CA≌△P8CB.∴P1A=P8B.
同理可得P2A=P7B,P3A=P6B,P4A=P5B.
則P1P2=P8P7,P2P3=P7P6,P3P4=P6P5
在P1,P2,P3…P8這些點(diǎn)中,有三對(duì)相鄰點(diǎn)距離相等.
點(diǎn)評(píng):本題難度較大,主要考查學(xué)生結(jié)合三角形性質(zhì)和全等三角形性質(zhì)等綜合探究規(guī)律。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某科技館坐落在山坡M處,從山腳A處到科技館的路線如圖所示,已知A處在水平面上,斜坡AB的坡角為30°,AB=40m,斜坡BM的坡角為18°,BM=60m,那么科技館M處的海拔高度是多少m?(精確到0.1m)(參考數(shù)據(jù):sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

Rt△ABC中,∠BAC=90o,AB=AC=2,以AC為一邊,在ABC外部作等腰直角△ACD,則線段BD的長為           .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示:數(shù)軸上點(diǎn)A所表示的數(shù)為a,則a的值是                (      )
A.+1B.-+1
C.D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=900,sinB=,AD為中線,求sin∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在Rt△ABC中,∠C=90°,AC=2BC,則SinA的值是
A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

計(jì)算:=__ __

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

,則下列結(jié)論正確的為   (    )
A.0°<∠A < 30°B.30°<∠A < 45°
C.45°< ∠A < 60°D.60°< ∠A < 90°

查看答案和解析>>

同步練習(xí)冊答案