(1)(-x-y)(x-y)+(x+y)2;
(2)(2a6x3-9ax6)÷(3ax3);
(3)(2x-5)(2x+5)-(2x+1)(2x-3);
(4)(
1
4
a2b)•(-2ab2)2

(5)-23+8-1×(-1)3×(-
1
2
-2+7°;
(6)(2x-y+1)(2x+y-1);
(7)(-2xy2+
1
4
xy)÷(-
1
4
xy)

(8)(a+2)(a2+4)(a4+16)(a-2);
(9)(x-y)2(x2+y22(x+y)2;
(10)(5m3n22•(-2m23•(-n34
(11)(π-3)0+(-0.125)2009×82009;
(12)(2am-3bn)(3an+5bm);
(13)(
1
3
x+
3
4
y)(
1
3
x-
3
4
y)-(
1
3
x-
3
4
y)2;
(14)(-2a2+3a)-(a2-2a+1);
(15)-2a(a2b+a-1)
(16)[x4y-2x2(x2-3xy2)]÷(-2x3
(17)(2m+n)(3n+1)
(18)1012
(19)199×201
(20)20082
(21)782
(22)(a+b+1)(a+b-1)
(23)(a-b)(a+b)(a2+b2
(24)(66x6y3-24x4y2+9x2y)÷(-3x2y).
分析:本題需先根據(jù)整式的混合運(yùn)算順序和法則以及乘法公式,分別進(jìn)行計(jì)算,即可求出結(jié)果.
解答:解:(1)(-x-y)(x-y)+(x+y)2;
=-x2+y2+x2+2xy+y2
=2y(y+x);
(2)(2a6x3-9ax6)÷(3ax3);
=
2
3
a5-3x3
;
(3)(2x-5)(2x+5)-(2x+1)(2x-3);
=4x2-25-4x2+4x+3,
=4x-22;
(4)(
1
4
a2b)•(-2ab2)2

=a4b5;
(5)-23+8-1×(-1)3×(-
1
2
-2+7°;
=-8+
1
8
×(-1)×4+1
,
=-8-
1
2
+1
,
=-7
1
2

(6)(2x-y+1)(2x+y-1);
=4x2-4xy+y2-1;
(7)(-2xy2+
1
4
xy)÷(-
1
4
xy)
;
=8y-1;
(8)(a+2)(a2+4)(a4+16)(a-2);
=a8-256;
(9)(x-y)2(x2+y22(x+y)2;
=x8-2x4y4+y8
(10)(5m3n22•(-2m23•(-n34;
=25m6n4•(-8m6)•n12
=-200m12n16
(11)(π-3)0+(-0.125)2009×82009;
=1+(-1)
=0;
(12)(2am-3bn)(3an+5bm);
=6am+n+10ambm-9anbn-15bm+n
(13)(
1
3
x+
3
4
y)(
1
3
x-
3
4
y)-(
1
3
x-
3
4
y)2;
=
1
9
x2-
9
16
y2
-
1
9
x2-
9
16
y2
+
1
2
xy,
=-
9
8
y2+
1
2
xy;
(14)(-2a2+3a)-(a2-2a+1);
=-3a2+5a-1;
(15)-2a(a2b+a-1),
=-2a3b-2a2+2a;
(16)[x4y-2x2(x2-3xy2)]÷(-2x3
=-
1
2
xy
+x-3y2
(17)(2m+n)(3n+1)
=6mn+2m+3n2+n;
(18)1012
=(100+1)2
=10000+200+1,
=10201;
(19)199×201
=(200-1)(200+1)
=40000-1,
=39999;
(20)20082
=(2000+8)2
=4000000+32000+64,
=4032064;
(21)782
=(80-2)2
=6400-320+4,
=6084;
(22)(a+b+1)(a+b-1)
=(a+b)2-1,
=a2+2ab+b2-1,
(23)(a-b)(a+b)(a2+b2),
=a4-b4;
(24)(66x6y3-24x4y2+9x2y)÷(-3x2y).
=-22x4y2+8x2y-3.
點(diǎn)評(píng):本題主要考查了整式的混合運(yùn)算,在解題時(shí)要根據(jù)整式的混合運(yùn)算和法則分別進(jìn)行計(jì)算是本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
ab2
2c2
÷(
ab
2c
)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,∠BAC=90°,△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ADE,恰好點(diǎn)D在BC上,連接CE.
(1)∠BAE與∠DAC有何關(guān)系?并說(shuō)明理由;
(2)△ABD與△ACE有何關(guān)系?并說(shuō)明理由;
(3)線段BC與CE在位置上有何關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、下列可以用平方差公式計(jì)算的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

35、若a-b=3,ab=2,則a2+b2=
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x+y=1,求
1
2
x2+xy+
1
2
y2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把20米長(zhǎng)的鐵絲分成兩段,并把每一段做成一個(gè)正方形的框,已知這兩個(gè)正方形面積的差等于20平方米,求所分成的兩段鐵絲的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,將△ABC沿直線BC向右平移2.5個(gè)單位得到△DEF,AC與DE相交于G點(diǎn),連接AD,AE,則下列結(jié)論中成立的是
①②

①四邊形ABED是平行四邊形;②△AGD≌△CGE;
③△ADE為等腰三角形;④AC平分∠EAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程組
3x+5(x+y)=36
3y+4(x+y)=36
一般是先把原方程組化簡(jiǎn)為
8x+5y=36
4x+7y=36
,然后再用代入法或加減法解,此外,還有更簡(jiǎn)便的方法嗎?如有,請(qǐng)解之.

查看答案和解析>>

同步練習(xí)冊(cè)答案