如圖,在A、B兩處之間要修一條筆直的公路,從A地測(cè)得公路走向是北偏東48°,A、B兩地同時(shí)開工,若干天后公路準(zhǔn)確接通.
(1)B地修公路的走向是南偏西
48
48
度;
(2)若公路AB長8千米,另一條公路BC長6千米,且BC的走向是北偏西42°,則A到B公路的距離是
8千米
8千米
分析:根據(jù)方位角的概念,圖中給出的信息,再根據(jù)已知轉(zhuǎn)向的角度結(jié)合三角形的內(nèi)角和與外角的關(guān)系求解.
解答:解:(1)B地所修公路的走向是南偏西48°.(2分)
(2)∵∠EBC=42°,∠ABG=48°,(3分)
AB是A到BC的距離.(4分)
∵AB=8千米,
∴A地到公路BC的距離是8千米.(6分)
點(diǎn)評(píng):此題是一道方向角問題,結(jié)合生活中的實(shí)際問題,將解三角形的相關(guān)知識(shí)有機(jī)結(jié)合,體現(xiàn)了數(shù)學(xué)應(yīng)用于實(shí)際生活的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊做Rt△ABC,再在斜邊上截取BD=,則AD的長就是所求方程的解。

(1)請(qǐng)用含字母a、b的代數(shù)式表示AD的長。

(2)請(qǐng)利用你已學(xué)的知識(shí)說明該圖解法的正確性,并說說這種解法的遺憾之處。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊做Rt△ABC,再在斜邊上截取,則AD的長就是所求方程的解。

(1)請(qǐng)用含字母a、b的代數(shù)式表示AD的長。

(2)請(qǐng)利用你已學(xué)的知識(shí)說明該圖解法的正確性,并說說這種解法的遺憾之處。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊做Rt△ABC,再在斜邊上截取BD=,則AD的長就是所求方程的解。

(1)請(qǐng)用含字母a、b的代數(shù)式表示AD的長。

(2)請(qǐng)利用你已學(xué)的知識(shí)說明該圖解法的正確性,并說說這種解法的遺憾之處。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鎮(zhèn)江市實(shí)驗(yàn)初中九年級(jí)(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解.在歐幾里得的《幾何原本》中,形如x2+ax=b2(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊作Rt△ABC,再在斜邊上截取BD=,則AD的長就是所求方程的解.
(1)請(qǐng)用含字母a、b的代數(shù)式表示AD的長.
(2)請(qǐng)利用你已學(xué)的知識(shí)說明該圖解法的正確性,并說說這種解法的遺憾之處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(17)(解析版) 題型:解答題

(2013•溧水縣二模)古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解.在歐幾里得的《幾何原本》中,形如x2+ax=b2(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊作Rt△ABC,再在斜邊上截取BD=,則AD的長就是所求方程的解.
(1)請(qǐng)用含字母a、b的代數(shù)式表示AD的長.
(2)請(qǐng)利用你已學(xué)的知識(shí)說明該圖解法的正確性,并說說這種解法的遺憾之處.

查看答案和解析>>

同步練習(xí)冊(cè)答案