如圖1,在平面直角坐標(biāo)系中,A、B分別為x、y軸正半軸上的點(diǎn),以AB為邊作正方形ABCD,已知OA、OB是方程x2-3x+m=0的兩根,且滿足關(guān)系式OB=2OA.
(1)求D點(diǎn)的坐標(biāo);
(2)如圖2,以A為圓心AB為半徑作⊙A,DE∥OB交⊙O于E,交x軸于F,連BE,求線段BE的長;
(3)如圖3,將線段AD繞著平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得A、D的對應(yīng)點(diǎn)分別為M、N(A對應(yīng)M,D對應(yīng)N),是否存在這樣的點(diǎn)M、N,使點(diǎn)M落在y軸上,而點(diǎn)N落在雙曲線數(shù)學(xué)公式(x<0)上?若存在,求M、N的坐標(biāo);若不存在,請說明理由.作業(yè)寶

解:(1)設(shè)OA=x1,OB=x2
依題意得x1+x2=3;x2=2x1;
∴x1=1,x2=2
∴A(1,0),B(0,2)
過點(diǎn)D作DH⊥x軸于點(diǎn)H,
∵∠BAO+∠DAH=90°,∠OBA+∠BAO=90°,
∴∠OBA=∠DAH,
在△AOB和△DHA中

∴△AOB≌△DHA(AAS),
∴DH=OA=1,AH=OB=2,
∴D(3,1);

(2)由(1)中得A(1,0)、B(0,2)、D(3,1),
∵DE∥OB交⊙O于E,交x軸于F,
∴D,E關(guān)于x軸對稱,
∴E (3,-1)
根據(jù)勾股定理得:BE==

(3)如圖3所示:
設(shè)線段AD繞P(x,y)旋轉(zhuǎn)180°,N(a,),
根據(jù)中心對稱的性質(zhì),可得P點(diǎn)橫坐標(biāo)為:,
∴-a+=3-,
解得:a=-2,
∴N點(diǎn)坐標(biāo)為:(-2,2),
∴P點(diǎn)縱坐標(biāo)為;2-(3-2)÷2=,
∴M點(diǎn)坐標(biāo)為:(0,3).
分析:(1)利用根與系數(shù)的關(guān)系得出A,B的值,進(jìn)而得出△AOB≌△DHA(AAS),即可得出D點(diǎn)坐標(biāo);
(2)由(1)中得A(1,0)、B(0,2)、D(3,1),進(jìn)而得出D,E關(guān)于x軸對稱,再由勾股定理求出BE的長;
(3)設(shè)線段AD繞P(x,y)旋轉(zhuǎn)180°,N(a,),根據(jù)中心對稱的性質(zhì),可得P點(diǎn)橫坐標(biāo)為:,進(jìn)而得出a的值,即可得出P點(diǎn)縱坐標(biāo),即可得出M點(diǎn)坐標(biāo).
點(diǎn)評:此題主要考查了全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì)和勾股定理等知識,根據(jù)已知得出旋轉(zhuǎn)中心的坐標(biāo)是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請寫出平移后點(diǎn)A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點(diǎn)C的坐標(biāo)為(-3,0).
(1)點(diǎn)A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點(diǎn)B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點(diǎn)O為頂點(diǎn)且過點(diǎn)A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時(shí)間為多少秒時(shí),三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).

(3)請你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時(shí)發(fā)現(xiàn):

如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對稱.

(1)請?jiān)趫D2中畫出點(diǎn), 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對稱時(shí),除了說明P、、三點(diǎn)共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請寫出平移后點(diǎn)A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊答案