如圖,在△ABC中,AB=10,AC=8,BC=6,經(jīng)過(guò)點(diǎn)C且與邊AB相切的動(dòng)圓與CA、CB分別相交于點(diǎn)P、Q,則線段PQ長(zhǎng)度的最小值是( )

A.4.75
B.4.8
C.5
D.4
【答案】分析:設(shè)QP的中點(diǎn)為F,圓F與AB的切點(diǎn)為D,連接FD,連接CF,CD,則有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形FC+FD=PQ,由三角形的三邊關(guān)系知,F(xiàn)C+FD>CD;只有當(dāng)點(diǎn)F在CD上時(shí),F(xiàn)C+FD=PQ有最小值為CD的長(zhǎng),即當(dāng)點(diǎn)F在直角三角形ABC的斜邊AB的高CD上時(shí),PQ=CD有最小值,由直角三角形的面積公式知,此時(shí)CD=BC•AC÷AB=4.8.
解答:解:如圖,設(shè)QP的中點(diǎn)為F,圓F與AB的切點(diǎn)為D,連接FD、CF、CD,則FD⊥AB.
∵AB=10,AC=8,BC=6,
∴∠ACB=90°,F(xiàn)C+FD=PQ,
∴FC+FD>CD,
∵當(dāng)點(diǎn)F在直角三角形ABC的斜邊AB的高CD上時(shí),PQ=CD有最小值,
∴CD=BC•AC÷AB=4.8.
故選B.
點(diǎn)評(píng):本題利用了切線的性質(zhì),勾股定理的逆定理,三角形的三邊關(guān)系,直角三角形的面積公式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案